数据驱动的期权定价

Min Dai, Hanqing Jin, Xi Yang
{"title":"数据驱动的期权定价","authors":"Min Dai, Hanqing Jin, Xi Yang","doi":"arxiv-2401.11158","DOIUrl":null,"url":null,"abstract":"We propose an innovative data-driven option pricing methodology that relies\nexclusively on the dataset of historical underlying asset prices. While the\ndataset is rooted in the objective world, option prices are commonly expressed\nas discounted expectations of their terminal payoffs in a risk-neutral world.\nBridging this gap motivates us to identify a pricing kernel process,\ntransforming option pricing into evaluating expectations in the objective\nworld. We recover the pricing kernel by solving a utility maximization problem,\nand evaluate the expectations in terms of a functional optimization problem.\nLeveraging the deep learning technique, we design data-driven algorithms to\nsolve both optimization problems over the dataset. Numerical experiments are\npresented to demonstrate the efficiency of our methodology.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven Option Pricing\",\"authors\":\"Min Dai, Hanqing Jin, Xi Yang\",\"doi\":\"arxiv-2401.11158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an innovative data-driven option pricing methodology that relies\\nexclusively on the dataset of historical underlying asset prices. While the\\ndataset is rooted in the objective world, option prices are commonly expressed\\nas discounted expectations of their terminal payoffs in a risk-neutral world.\\nBridging this gap motivates us to identify a pricing kernel process,\\ntransforming option pricing into evaluating expectations in the objective\\nworld. We recover the pricing kernel by solving a utility maximization problem,\\nand evaluate the expectations in terms of a functional optimization problem.\\nLeveraging the deep learning technique, we design data-driven algorithms to\\nsolve both optimization problems over the dataset. Numerical experiments are\\npresented to demonstrate the efficiency of our methodology.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.11158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种创新的数据驱动期权定价方法,它完全依赖于历史标的资产价格数据集。虽然数据集植根于客观世界,但期权价格通常表示为在风险中性世界中对其最终回报的贴现预期。弥合这一差距促使我们确定一个定价内核过程,将期权定价转化为评估客观世界中的预期。我们通过求解效用最大化问题来恢复定价内核,并通过函数优化问题来评估期望值。利用深度学习技术,我们设计了数据驱动算法来解决数据集上的这两个优化问题。我们通过数值实验来证明我们方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven Option Pricing
We propose an innovative data-driven option pricing methodology that relies exclusively on the dataset of historical underlying asset prices. While the dataset is rooted in the objective world, option prices are commonly expressed as discounted expectations of their terminal payoffs in a risk-neutral world. Bridging this gap motivates us to identify a pricing kernel process, transforming option pricing into evaluating expectations in the objective world. We recover the pricing kernel by solving a utility maximization problem, and evaluate the expectations in terms of a functional optimization problem. Leveraging the deep learning technique, we design data-driven algorithms to solve both optimization problems over the dataset. Numerical experiments are presented to demonstrate the efficiency of our methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Short-maturity Asian options in local-stochastic volatility models Automate Strategy Finding with LLM in Quant investment Valuation Model of Chinese Convertible Bonds Based on Monte Carlo Simulation Semi-analytical pricing of options written on SOFR futures A functional variational approach to pricing path dependent insurance policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1