{"title":"采用常重碎白云石粗骨料全嵌入式 IPE 钢截面的 CCES 柱的有限元数值建模和设计方法","authors":"Mostafa M. A. Mostafa","doi":"10.1186/s40069-023-00644-x","DOIUrl":null,"url":null,"abstract":"<p>The composite concrete-encased steel (CCES) column member is made by the steel section embedded and covered in concrete from all sides. Due to the ability of the composite sections to bear heavy loads while using smaller sections, CCES columns have been widely used. Analytical studies on the CCES columns’ behavior using crushed dolomite coarse aggregate (CDCA) with different shear connectors (SCs) types/shapes and sizes under axial loads are described here. This study also aims to evaluate the current design methods to determine the ultimate capacity of the CCES with CDCA concrete columns using nine available codes. The results show that the finite element (FE) analysis could accurately predict the ultimate capacity of the CCES columns; the column’s capacity improved by about 41.75% as <i>f</i><sub><i>cu</i></sub> increased by 60%. Increasing the IPE-shaped steel strength (<i>f</i><sub><i>ss</i></sub>) strategy is not very effective and gives brittle behavior even though enhancing the <i>f</i><sub><i>ss</i></sub> improves the capacity. The column's capacity increased as the tie stirrups and steel bars ratios increased. The column’s capacity increased by about 17.63%, as steel bars ratios increased by 155.49%. The efficiency factors increased slightly as tie stirrups were raised but slightly decreased as steel bar ratios increased. Using the SCs system increases the columns’ capacity by an average value of about 4.9% of the specimen without SCs. The computed capacities using the nine available codes are conservative and safe. The closest estimates made by the YB9082-06 code are 26% less on average than the test results; in contrast, the safest predictions made by the ECP-LRFD code are 68% less, on average, than test results.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"267 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical FE Modeling and Design Methods of CCES Columns with Normal-Weight Crushed Dolomite Coarse Aggregate Fully Embedded IPE Steel-Section\",\"authors\":\"Mostafa M. A. Mostafa\",\"doi\":\"10.1186/s40069-023-00644-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The composite concrete-encased steel (CCES) column member is made by the steel section embedded and covered in concrete from all sides. Due to the ability of the composite sections to bear heavy loads while using smaller sections, CCES columns have been widely used. Analytical studies on the CCES columns’ behavior using crushed dolomite coarse aggregate (CDCA) with different shear connectors (SCs) types/shapes and sizes under axial loads are described here. This study also aims to evaluate the current design methods to determine the ultimate capacity of the CCES with CDCA concrete columns using nine available codes. The results show that the finite element (FE) analysis could accurately predict the ultimate capacity of the CCES columns; the column’s capacity improved by about 41.75% as <i>f</i><sub><i>cu</i></sub> increased by 60%. Increasing the IPE-shaped steel strength (<i>f</i><sub><i>ss</i></sub>) strategy is not very effective and gives brittle behavior even though enhancing the <i>f</i><sub><i>ss</i></sub> improves the capacity. The column's capacity increased as the tie stirrups and steel bars ratios increased. The column’s capacity increased by about 17.63%, as steel bars ratios increased by 155.49%. The efficiency factors increased slightly as tie stirrups were raised but slightly decreased as steel bar ratios increased. Using the SCs system increases the columns’ capacity by an average value of about 4.9% of the specimen without SCs. The computed capacities using the nine available codes are conservative and safe. The closest estimates made by the YB9082-06 code are 26% less on average than the test results; in contrast, the safest predictions made by the ECP-LRFD code are 68% less, on average, than test results.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":13832,\"journal\":{\"name\":\"International Journal of Concrete Structures and Materials\",\"volume\":\"267 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Concrete Structures and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40069-023-00644-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00644-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Numerical FE Modeling and Design Methods of CCES Columns with Normal-Weight Crushed Dolomite Coarse Aggregate Fully Embedded IPE Steel-Section
The composite concrete-encased steel (CCES) column member is made by the steel section embedded and covered in concrete from all sides. Due to the ability of the composite sections to bear heavy loads while using smaller sections, CCES columns have been widely used. Analytical studies on the CCES columns’ behavior using crushed dolomite coarse aggregate (CDCA) with different shear connectors (SCs) types/shapes and sizes under axial loads are described here. This study also aims to evaluate the current design methods to determine the ultimate capacity of the CCES with CDCA concrete columns using nine available codes. The results show that the finite element (FE) analysis could accurately predict the ultimate capacity of the CCES columns; the column’s capacity improved by about 41.75% as fcu increased by 60%. Increasing the IPE-shaped steel strength (fss) strategy is not very effective and gives brittle behavior even though enhancing the fss improves the capacity. The column's capacity increased as the tie stirrups and steel bars ratios increased. The column’s capacity increased by about 17.63%, as steel bars ratios increased by 155.49%. The efficiency factors increased slightly as tie stirrups were raised but slightly decreased as steel bar ratios increased. Using the SCs system increases the columns’ capacity by an average value of about 4.9% of the specimen without SCs. The computed capacities using the nine available codes are conservative and safe. The closest estimates made by the YB9082-06 code are 26% less on average than the test results; in contrast, the safest predictions made by the ECP-LRFD code are 68% less, on average, than test results.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.