Tatiane Viegas Debiasi, Adélia Carla Santos Ornelas, Dimitri Nicolau Brauco, Anderson Kikuchi Calzavara, Cristiano Medri, Edmilson Bianchini, Halley Caixeta Oliveira, José Antonio Pimenta, Renata Stolf-Moreira, Marcela Blagitz
{"title":"辐照度在两种对光照需求截然不同的新热带树木幼苗中引发了不同的形态生理反应","authors":"Tatiane Viegas Debiasi, Adélia Carla Santos Ornelas, Dimitri Nicolau Brauco, Anderson Kikuchi Calzavara, Cristiano Medri, Edmilson Bianchini, Halley Caixeta Oliveira, José Antonio Pimenta, Renata Stolf-Moreira, Marcela Blagitz","doi":"10.1007/s40626-023-00303-2","DOIUrl":null,"url":null,"abstract":"<p>Phenotypic plasticity occurs when plants acclimatize to contrasting conditions. Herein, we test the hypothesis that seedlings of a light-demanding species have greater phenotypic plasticity compared to seedlings of a shade-tolerant species under high irradiance. Thus, we investigate the growth, anatomical, and leaf gas exchange responses of <i>Citharexylum myrianthum</i>, a light-demanding species, and <i>Poecilanthe parviflora</i>, a shade-tolerant species, under full light and 60% shading. Under full light, the seedlings of both species were shorter, showed lower photosynthetic rates and specific leaf area, and thicker palisade parenchyma. In the same conditions, <i>C. myrianthum</i> showed increased number of leaves, and <i>P. parviflora</i> reduced leaf area and increased number of stomata and allocation of phloem and cortical parenchyma. Lower photosynthetic rates may negatively affect biomass allocation and growth, although <i>C. myrianthum</i> seems to show a higher tolerance to irradiance since it produced more leaves. <i>P. parviflora</i> seems to optimize heat dissipation, reduce water loss, and improve the allocation of photoassimilate transport and storage, which could increase performance during establishment in field conditions. The plasticity index of both species was similar. Thus, generalizations about the species plasticity and ecological group to which they belong should be avoided. Species-related responses of growth, anatomical, and gas exchange parameters were found, indicating that generalizations about the performance of functional groups should also be avoided. These findings may contribute to the success of forest restoration projects.</p>","PeriodicalId":23038,"journal":{"name":"Theoretical and Experimental Plant Physiology","volume":"54 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irradiance triggers different morphophysiological responses in two neotropical tree seedlings with contrasting light demands\",\"authors\":\"Tatiane Viegas Debiasi, Adélia Carla Santos Ornelas, Dimitri Nicolau Brauco, Anderson Kikuchi Calzavara, Cristiano Medri, Edmilson Bianchini, Halley Caixeta Oliveira, José Antonio Pimenta, Renata Stolf-Moreira, Marcela Blagitz\",\"doi\":\"10.1007/s40626-023-00303-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phenotypic plasticity occurs when plants acclimatize to contrasting conditions. Herein, we test the hypothesis that seedlings of a light-demanding species have greater phenotypic plasticity compared to seedlings of a shade-tolerant species under high irradiance. Thus, we investigate the growth, anatomical, and leaf gas exchange responses of <i>Citharexylum myrianthum</i>, a light-demanding species, and <i>Poecilanthe parviflora</i>, a shade-tolerant species, under full light and 60% shading. Under full light, the seedlings of both species were shorter, showed lower photosynthetic rates and specific leaf area, and thicker palisade parenchyma. In the same conditions, <i>C. myrianthum</i> showed increased number of leaves, and <i>P. parviflora</i> reduced leaf area and increased number of stomata and allocation of phloem and cortical parenchyma. Lower photosynthetic rates may negatively affect biomass allocation and growth, although <i>C. myrianthum</i> seems to show a higher tolerance to irradiance since it produced more leaves. <i>P. parviflora</i> seems to optimize heat dissipation, reduce water loss, and improve the allocation of photoassimilate transport and storage, which could increase performance during establishment in field conditions. The plasticity index of both species was similar. Thus, generalizations about the species plasticity and ecological group to which they belong should be avoided. Species-related responses of growth, anatomical, and gas exchange parameters were found, indicating that generalizations about the performance of functional groups should also be avoided. These findings may contribute to the success of forest restoration projects.</p>\",\"PeriodicalId\":23038,\"journal\":{\"name\":\"Theoretical and Experimental Plant Physiology\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Experimental Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s40626-023-00303-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Experimental Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s40626-023-00303-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
当植物适应对比强烈的条件时,就会产生表型可塑性。在本文中,我们验证了一个假设,即在高辐照度下,需光物种的幼苗与耐阴物种的幼苗相比具有更大的表型可塑性。因此,我们研究了需光物种 Citharexylum myrianthum 和耐阴物种 Poecilanthe parviflora 在全光照和 60% 遮光条件下的生长、解剖和叶片气体交换反应。在全光照条件下,两种植物的幼苗都较短,光合速率和比叶面积较低,栅栏状实质层较厚。在相同条件下,C. myrianthum 的叶片数量增加,而 P. parviflora 的叶片面积减少,气孔数量增加,韧皮部和皮层实质分配增加。较低的光合速率可能会对生物量分配和生长产生负面影响,不过 C. myrianthum 似乎对辐照有更强的耐受性,因为它能长出更多的叶子。P. parviflora 似乎能优化散热,减少水分损失,改善光同化物的运输和储存分配,从而提高在田间条件下的生长性能。两个物种的可塑性指数相似。因此,应避免对物种的可塑性及其所属的生态群组一概而论。生长、解剖和气体交换参数的反应与物种有关,这表明也应避免对功能群的表现一概而论。这些发现可能有助于森林恢复项目的成功。
Irradiance triggers different morphophysiological responses in two neotropical tree seedlings with contrasting light demands
Phenotypic plasticity occurs when plants acclimatize to contrasting conditions. Herein, we test the hypothesis that seedlings of a light-demanding species have greater phenotypic plasticity compared to seedlings of a shade-tolerant species under high irradiance. Thus, we investigate the growth, anatomical, and leaf gas exchange responses of Citharexylum myrianthum, a light-demanding species, and Poecilanthe parviflora, a shade-tolerant species, under full light and 60% shading. Under full light, the seedlings of both species were shorter, showed lower photosynthetic rates and specific leaf area, and thicker palisade parenchyma. In the same conditions, C. myrianthum showed increased number of leaves, and P. parviflora reduced leaf area and increased number of stomata and allocation of phloem and cortical parenchyma. Lower photosynthetic rates may negatively affect biomass allocation and growth, although C. myrianthum seems to show a higher tolerance to irradiance since it produced more leaves. P. parviflora seems to optimize heat dissipation, reduce water loss, and improve the allocation of photoassimilate transport and storage, which could increase performance during establishment in field conditions. The plasticity index of both species was similar. Thus, generalizations about the species plasticity and ecological group to which they belong should be avoided. Species-related responses of growth, anatomical, and gas exchange parameters were found, indicating that generalizations about the performance of functional groups should also be avoided. These findings may contribute to the success of forest restoration projects.
期刊介绍:
The journal does not publish articles in taxonomy, anatomy, systematics and ecology unless they have a physiological approach related to the following sections:
Biochemical Processes: primary and secondary metabolism, and biochemistry;
Photobiology and Photosynthesis Processes;
Cell Biology;
Genes and Development;
Plant Molecular Biology;
Signaling and Response;
Plant Nutrition;
Growth and Differentiation: seed physiology, hormonal physiology and photomorphogenesis;
Post-Harvest Physiology;
Ecophysiology/Crop Physiology and Stress Physiology;
Applied Plant Ecology;
Plant-Microbe and Plant-Insect Interactions;
Instrumentation in Plant Physiology;
Education in Plant Physiology.