{"title":"元宇宙时代的系统生物学协作架构。","authors":"Eliott Jacopin, Yuki Sakamoto, Kozo Nishida, Kazunari Kaizu, Koichi Takahashi","doi":"10.1038/s41540-024-00334-8","DOIUrl":null,"url":null,"abstract":"<p><p>As the current state of the Metaverse is largely driven by corporate interests, which may not align with scientific goals and values, academia should play a more active role in its development. Here, we present the challenges and solutions for building a Metaverse that supports systems biology research and collaboration. Our solution consists of two components: Kosmogora, a server ensuring biological data access, traceability, and integrity in the context of a highly collaborative environment such as a metaverse; and ECellDive, a virtual reality application to explore, interact, and build upon the data managed by Kosmogora. We illustrate the synergy between the two components by visualizing a metabolic network and its flux balance analysis. We also argue that the Metaverse of systems biology will foster closer communication and cooperation between experimentalists and modelers in the field.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821884/pdf/","citationCount":"0","resultStr":"{\"title\":\"An architecture for collaboration in systems biology at the age of the Metaverse.\",\"authors\":\"Eliott Jacopin, Yuki Sakamoto, Kozo Nishida, Kazunari Kaizu, Koichi Takahashi\",\"doi\":\"10.1038/s41540-024-00334-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the current state of the Metaverse is largely driven by corporate interests, which may not align with scientific goals and values, academia should play a more active role in its development. Here, we present the challenges and solutions for building a Metaverse that supports systems biology research and collaboration. Our solution consists of two components: Kosmogora, a server ensuring biological data access, traceability, and integrity in the context of a highly collaborative environment such as a metaverse; and ECellDive, a virtual reality application to explore, interact, and build upon the data managed by Kosmogora. We illustrate the synergy between the two components by visualizing a metabolic network and its flux balance analysis. We also argue that the Metaverse of systems biology will foster closer communication and cooperation between experimentalists and modelers in the field.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821884/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-024-00334-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00334-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
An architecture for collaboration in systems biology at the age of the Metaverse.
As the current state of the Metaverse is largely driven by corporate interests, which may not align with scientific goals and values, academia should play a more active role in its development. Here, we present the challenges and solutions for building a Metaverse that supports systems biology research and collaboration. Our solution consists of two components: Kosmogora, a server ensuring biological data access, traceability, and integrity in the context of a highly collaborative environment such as a metaverse; and ECellDive, a virtual reality application to explore, interact, and build upon the data managed by Kosmogora. We illustrate the synergy between the two components by visualizing a metabolic network and its flux balance analysis. We also argue that the Metaverse of systems biology will foster closer communication and cooperation between experimentalists and modelers in the field.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.