基于具有优化跨导与漏极电流比的两级 CNTFET 运算放大器的可编程增益放大器

IF 1.2 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Analog Integrated Circuits and Signal Processing Pub Date : 2024-01-28 DOI:10.1007/s10470-023-02239-8
J. Shailaja, V. S. V. Prabhakar
{"title":"基于具有优化跨导与漏极电流比的两级 CNTFET 运算放大器的可编程增益放大器","authors":"J. Shailaja,&nbsp;V. S. V. Prabhakar","doi":"10.1007/s10470-023-02239-8","DOIUrl":null,"url":null,"abstract":"<div><p>A cardiac biomarker (CB) is an important substance released into the blood during heart damage. CB measurements help in the detection of concentric levels in cardiac troponin I. The increased troponin level in the blood can lead to the major cause of cardiac injury. Hence it is necessary to monitor the troponin level of blood. Accurate troponin I detection sensors detect the troponin level in blood. The biosensor signal is converted into an electrical signal of very low voltages. However, these electrical signals are too low. Hence, a bio-medical amplifier is introduced with analog to digital converters and compressors to amplify, capture, transfer and digitize the biosensor signal with less power and area consumption. A bio-amplifier is presented with programmable bandwidth and gain, but the task is challenging. Hence, a fully balanced bio-medical gain amplifier using a two-level CNTFET based operational amplifier (op-amp) (BGA-2C-opamp) is proposed in this work. This particular work uses two stages of CNTFET-based op-amp and presents an input capacitor for blocking the DC offset voltages. This coupling input capacitor operates the bio-medical amplifier gain using an extra load capacitor at the output. The coupling feedback resistor and capacitor are used in this amplification stage to provide a small pole frequency. The proportion of input and the feedback capacitors determines the gain of the amplification stage. To develop a two stage CNTFET-based op-amps, the trans-conductance to drain current ratio measurement is used in this case. Moreover, the bias currents of the quasi-resistors used in the feedback circuit are adjusted to achieve the cut-off programmability. The proposed BGA-2C op-amps are carried out in the cadence Virtuoso tool and analyze the proposed system’s effectiveness in magnitude response, phase response, transient response, gain, total harmonic distortion, input referred noise, phase margin, common mode rejection ratio and power supply rejection ratio. In addition to this, the performance measures of delay (D), power (p) and power delay product are examined under different chirality vectors; also, the Monte Carlo analysis is examined.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A programmable gain amplifier based on a two-level CNTFET op amp with optimized trans-conductance to drain current ratio\",\"authors\":\"J. Shailaja,&nbsp;V. S. V. Prabhakar\",\"doi\":\"10.1007/s10470-023-02239-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A cardiac biomarker (CB) is an important substance released into the blood during heart damage. CB measurements help in the detection of concentric levels in cardiac troponin I. The increased troponin level in the blood can lead to the major cause of cardiac injury. Hence it is necessary to monitor the troponin level of blood. Accurate troponin I detection sensors detect the troponin level in blood. The biosensor signal is converted into an electrical signal of very low voltages. However, these electrical signals are too low. Hence, a bio-medical amplifier is introduced with analog to digital converters and compressors to amplify, capture, transfer and digitize the biosensor signal with less power and area consumption. A bio-amplifier is presented with programmable bandwidth and gain, but the task is challenging. Hence, a fully balanced bio-medical gain amplifier using a two-level CNTFET based operational amplifier (op-amp) (BGA-2C-opamp) is proposed in this work. This particular work uses two stages of CNTFET-based op-amp and presents an input capacitor for blocking the DC offset voltages. This coupling input capacitor operates the bio-medical amplifier gain using an extra load capacitor at the output. The coupling feedback resistor and capacitor are used in this amplification stage to provide a small pole frequency. The proportion of input and the feedback capacitors determines the gain of the amplification stage. To develop a two stage CNTFET-based op-amps, the trans-conductance to drain current ratio measurement is used in this case. Moreover, the bias currents of the quasi-resistors used in the feedback circuit are adjusted to achieve the cut-off programmability. The proposed BGA-2C op-amps are carried out in the cadence Virtuoso tool and analyze the proposed system’s effectiveness in magnitude response, phase response, transient response, gain, total harmonic distortion, input referred noise, phase margin, common mode rejection ratio and power supply rejection ratio. In addition to this, the performance measures of delay (D), power (p) and power delay product are examined under different chirality vectors; also, the Monte Carlo analysis is examined.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-023-02239-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-023-02239-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 心脏生物标志物(CB)是心脏受损时释放到血液中的一种重要物质。CB 测量有助于检测心肌肌钙蛋白 I 的浓度水平。因此,有必要监测血液中的肌钙蛋白水平。精确的肌钙蛋白 I 检测传感器可检测血液中的肌钙蛋白水平。生物传感器信号会转换成电压很低的电信号。然而,这些电信号的电压太低。因此,生物医学放大器与模数转换器和压缩器配合使用,以较小的功率和面积消耗放大、捕获、传输生物传感器信号并将其数字化。生物放大器具有可编程带宽和增益,但这项任务具有挑战性。因此,本研究提出了一种使用基于 CNTFET 的两级运算放大器(BGA-2C-opamp)的全平衡生物医学增益放大器。这项特殊的工作使用了两级 CNTFET 运算放大器,并提出了一个用于阻断直流偏移电压的输入电容器。该耦合输入电容器在输出端使用额外的负载电容器操作生物医学放大器增益。耦合反馈电阻器和电容器用于该放大级,以提供较小的极点频率。输入电容和反馈电容的比例决定了放大级的增益。为了开发基于 CNTFET 的两级运算放大器,本例采用了跨导与漏极电流比测量方法。此外,还调整了反馈电路中使用的准电阻的偏置电流,以实现截止可编程性。在 cadence Virtuoso 工具中对所提出的 BGA-2C 运算放大器进行了幅值响应、相位响应、瞬态响应、增益、总谐波失真、输入参考噪声、相位裕度、共模抑制比和电源抑制比分析。此外,还研究了不同手性向量下的延迟 (D)、功率 (p) 和功率延迟乘积的性能指标;还研究了蒙特卡罗分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A programmable gain amplifier based on a two-level CNTFET op amp with optimized trans-conductance to drain current ratio

A cardiac biomarker (CB) is an important substance released into the blood during heart damage. CB measurements help in the detection of concentric levels in cardiac troponin I. The increased troponin level in the blood can lead to the major cause of cardiac injury. Hence it is necessary to monitor the troponin level of blood. Accurate troponin I detection sensors detect the troponin level in blood. The biosensor signal is converted into an electrical signal of very low voltages. However, these electrical signals are too low. Hence, a bio-medical amplifier is introduced with analog to digital converters and compressors to amplify, capture, transfer and digitize the biosensor signal with less power and area consumption. A bio-amplifier is presented with programmable bandwidth and gain, but the task is challenging. Hence, a fully balanced bio-medical gain amplifier using a two-level CNTFET based operational amplifier (op-amp) (BGA-2C-opamp) is proposed in this work. This particular work uses two stages of CNTFET-based op-amp and presents an input capacitor for blocking the DC offset voltages. This coupling input capacitor operates the bio-medical amplifier gain using an extra load capacitor at the output. The coupling feedback resistor and capacitor are used in this amplification stage to provide a small pole frequency. The proportion of input and the feedback capacitors determines the gain of the amplification stage. To develop a two stage CNTFET-based op-amps, the trans-conductance to drain current ratio measurement is used in this case. Moreover, the bias currents of the quasi-resistors used in the feedback circuit are adjusted to achieve the cut-off programmability. The proposed BGA-2C op-amps are carried out in the cadence Virtuoso tool and analyze the proposed system’s effectiveness in magnitude response, phase response, transient response, gain, total harmonic distortion, input referred noise, phase margin, common mode rejection ratio and power supply rejection ratio. In addition to this, the performance measures of delay (D), power (p) and power delay product are examined under different chirality vectors; also, the Monte Carlo analysis is examined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
期刊最新文献
FPGA-based implementation and verification of hybrid security algorithm for NoC architecture A multiple resonant microstrip patch heart shape antenna for satellite and Wi-Fi communication Low power content addressable memory using common match line scheme for high performance processors An ultra-low power fully CMOS sub-bandgap reference in weak inversion Secure and reliable communication using memristor-based chaotic circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1