{"title":"火星 Margaritifer Terra 地区地堑的结构研究","authors":"Supratik Basu, Ashmita Dasgupta, Abhik Kundu, Dipayan Dasgupta","doi":"10.1016/j.pss.2024.105840","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The surface of Mars preserves a variety of structural and geomorphic features such as wrinkle ridges, graben, lobate scarps, impact basins, </span>paleochannels etc., which owe their origin to endogenic processes of deformation as well as </span>meteorite impacts<span><span>. Graben, which form in extensional stress regimes, are one of the most common structural features identified on these planetary bodies<span>. Many graben are observed in the Margaritifer Terra, a Noachian (4.1 Ga to 3.7 Ga) highland terrain in the southern hemisphere of Mars; but a detailed structural study of these graben have not been carried out so far. The diverse </span></span>geomorphology<span><span> of these graben such as their orientation, planform and disposition make the region interesting for structural geological studies. With an aim to unveil the causes behind the formation of these graben, detailed morphometric analyses, estimation of maximum displacement of the faults, and extension across them (ranging between ∼0.3 and ∼0.8 km), as well as age estimation (minimum ∼1 Ga to maximum ∼3.8 Ga) and correlation with the stratigraphic units are carried out on eleven prominent graben in the Margaritifer Terra. The graben belong to two age clusters: 1) late Noachian–early Hesperian and 2) Amazonian. The age-depth correlation, proximity to chaos and floor-fractured craters, absence of any dominant geographic trend and presence of circular graben together indicate that the graben were formed due to </span>dike emplacement in the area in two distinct phases separated by about 2 Ga. Older graben were formed above dike tops at greater depth (>50 km below the surface) while dikes below the younger graben reached shallower levels (∼4 km below the surface) below the surface. The intrusive activities are local to the Margaritifer Terra region and were possibly not caused by Tharsis and Valles Marineris related deformation.</span></span></p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"241 ","pages":"Article 105840"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural study of graben within the Margaritifer Terra region of Mars\",\"authors\":\"Supratik Basu, Ashmita Dasgupta, Abhik Kundu, Dipayan Dasgupta\",\"doi\":\"10.1016/j.pss.2024.105840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The surface of Mars preserves a variety of structural and geomorphic features such as wrinkle ridges, graben, lobate scarps, impact basins, </span>paleochannels etc., which owe their origin to endogenic processes of deformation as well as </span>meteorite impacts<span><span>. Graben, which form in extensional stress regimes, are one of the most common structural features identified on these planetary bodies<span>. Many graben are observed in the Margaritifer Terra, a Noachian (4.1 Ga to 3.7 Ga) highland terrain in the southern hemisphere of Mars; but a detailed structural study of these graben have not been carried out so far. The diverse </span></span>geomorphology<span><span> of these graben such as their orientation, planform and disposition make the region interesting for structural geological studies. With an aim to unveil the causes behind the formation of these graben, detailed morphometric analyses, estimation of maximum displacement of the faults, and extension across them (ranging between ∼0.3 and ∼0.8 km), as well as age estimation (minimum ∼1 Ga to maximum ∼3.8 Ga) and correlation with the stratigraphic units are carried out on eleven prominent graben in the Margaritifer Terra. The graben belong to two age clusters: 1) late Noachian–early Hesperian and 2) Amazonian. The age-depth correlation, proximity to chaos and floor-fractured craters, absence of any dominant geographic trend and presence of circular graben together indicate that the graben were formed due to </span>dike emplacement in the area in two distinct phases separated by about 2 Ga. Older graben were formed above dike tops at greater depth (>50 km below the surface) while dikes below the younger graben reached shallower levels (∼4 km below the surface) below the surface. The intrusive activities are local to the Margaritifer Terra region and were possibly not caused by Tharsis and Valles Marineris related deformation.</span></span></p></div>\",\"PeriodicalId\":20054,\"journal\":{\"name\":\"Planetary and Space Science\",\"volume\":\"241 \",\"pages\":\"Article 105840\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planetary and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032063324000047\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324000047","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
火星表面保留了各种结构和地貌特征,如皱脊,地堑,叶状疤痕,撞击盆地,古河道等,这些特征的形成源于内源变形过程和陨石撞击。在伸展应力机制中形成的地堑是这些行星体上最常见的结构特征之一。在火星南半球的诺亚纪(4.1 Ga 到 3.7 Ga)高原地形 Margaritifer Terra 中观察到许多地堑,但迄今为止尚未对这些地堑进行详细的结构研究。这些地堑的不同地貌,如走向、平面形态和布局,使该地区成为结构地质研究的热点。为了揭示这些地堑形成的原因,我们对 Margaritifer Terra 地区的 11 条主要地堑进行了详细的形态计量分析、断层最大位移估算、断层延伸(0.3 至 0.8 千米)、年龄估算(最小 1 Ga 至最大 3.8 Ga)以及与地层单元的相关性研究。这些地堑属于两个时代群:1)晚新元古代-早黑斯佩尔元古代;2)亚马逊元古代。年龄-深度的相关性、与混沌陨石坑和地面断裂陨石坑的邻近性、没有任何主要的地理趋势以及圆形地堑的存在共同表明,这些地堑是由于该地区的堤坝堆积而形成的,分为两个不同的阶段,相距约 2 Ga。年代较早的地堑形成于地表以下较深的堤顶之上(距地表 50 公里),而年代较晚的地堑之下的堤顶则位于地表以下较浅的位置(距地表 4 公里)。这些侵入活动是 Margaritifer Terra 地区的局部活动,可能不是由与 Tharsis 和 Valles Marineris 有关的变形引起的。
Structural study of graben within the Margaritifer Terra region of Mars
The surface of Mars preserves a variety of structural and geomorphic features such as wrinkle ridges, graben, lobate scarps, impact basins, paleochannels etc., which owe their origin to endogenic processes of deformation as well as meteorite impacts. Graben, which form in extensional stress regimes, are one of the most common structural features identified on these planetary bodies. Many graben are observed in the Margaritifer Terra, a Noachian (4.1 Ga to 3.7 Ga) highland terrain in the southern hemisphere of Mars; but a detailed structural study of these graben have not been carried out so far. The diverse geomorphology of these graben such as their orientation, planform and disposition make the region interesting for structural geological studies. With an aim to unveil the causes behind the formation of these graben, detailed morphometric analyses, estimation of maximum displacement of the faults, and extension across them (ranging between ∼0.3 and ∼0.8 km), as well as age estimation (minimum ∼1 Ga to maximum ∼3.8 Ga) and correlation with the stratigraphic units are carried out on eleven prominent graben in the Margaritifer Terra. The graben belong to two age clusters: 1) late Noachian–early Hesperian and 2) Amazonian. The age-depth correlation, proximity to chaos and floor-fractured craters, absence of any dominant geographic trend and presence of circular graben together indicate that the graben were formed due to dike emplacement in the area in two distinct phases separated by about 2 Ga. Older graben were formed above dike tops at greater depth (>50 km below the surface) while dikes below the younger graben reached shallower levels (∼4 km below the surface) below the surface. The intrusive activities are local to the Margaritifer Terra region and were possibly not caused by Tharsis and Valles Marineris related deformation.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research