基于多变场景下自适应 MPC 的自动驾驶汽车路径跟踪控制

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2024-01-25 DOI:10.1049/itr2.12484
Xinyong Liu, Jian Ou, Dehai Yan, Yong Zhang, Guohong Deng
{"title":"基于多变场景下自适应 MPC 的自动驾驶汽车路径跟踪控制","authors":"Xinyong Liu,&nbsp;Jian Ou,&nbsp;Dehai Yan,&nbsp;Yong Zhang,&nbsp;Guohong Deng","doi":"10.1049/itr2.12484","DOIUrl":null,"url":null,"abstract":"<p>For complex and dynamic high-speed driving scenarios, an adaptive model predictive control (MPC) controller is designed to ensure effective path tracking for automated vehicles. Firstly, in order to prevent model mismatch in the MPC controller, a tire cornering stiffness estimation algorithm is designed and a soft constraint on slip angle is added to further enhance the controller's precision in tracking trajectories and the vehicle's driving stability. Secondly, the improved particle swarm optimization (IPSO) method with dynamic weights and penalty functions is suggested to address the issue of insufficient accuracy in solving quadratic programming. Additionally, the standard particle swarm optimization (PSO) algorithm is used to seek the most suitable time horizon parameters offline to obtain the best time horizon data set under different vehicle speeds and adhesion coefficients, and then it is optimized online by an adaptive network-based fuzzy inference system (ANFIS) to enhance the model predictive controller's adaptability in different operating conditions. Finally, simulation experiments are conducted under three different operating conditions: docked roads, split roads, and variable vehicle speeds. The results indicate that the designed adaptive MPC controller can accurately and stably track the reference trajectory in various scenarios.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12484","citationCount":"0","resultStr":"{\"title\":\"Path tracking control of automated vehicles based on adaptive MPC in variable scenarios\",\"authors\":\"Xinyong Liu,&nbsp;Jian Ou,&nbsp;Dehai Yan,&nbsp;Yong Zhang,&nbsp;Guohong Deng\",\"doi\":\"10.1049/itr2.12484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For complex and dynamic high-speed driving scenarios, an adaptive model predictive control (MPC) controller is designed to ensure effective path tracking for automated vehicles. Firstly, in order to prevent model mismatch in the MPC controller, a tire cornering stiffness estimation algorithm is designed and a soft constraint on slip angle is added to further enhance the controller's precision in tracking trajectories and the vehicle's driving stability. Secondly, the improved particle swarm optimization (IPSO) method with dynamic weights and penalty functions is suggested to address the issue of insufficient accuracy in solving quadratic programming. Additionally, the standard particle swarm optimization (PSO) algorithm is used to seek the most suitable time horizon parameters offline to obtain the best time horizon data set under different vehicle speeds and adhesion coefficients, and then it is optimized online by an adaptive network-based fuzzy inference system (ANFIS) to enhance the model predictive controller's adaptability in different operating conditions. Finally, simulation experiments are conducted under three different operating conditions: docked roads, split roads, and variable vehicle speeds. The results indicate that the designed adaptive MPC controller can accurately and stably track the reference trajectory in various scenarios.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12484\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12484\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12484","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

针对复杂多变的高速驾驶场景,设计了一种自适应模型预测控制(MPC)控制器,以确保自动驾驶车辆的有效路径跟踪。首先,为了防止 MPC 控制器中的模型失配,设计了轮胎转弯刚度估计算法,并添加了滑移角软约束,以进一步提高控制器的轨迹跟踪精度和车辆的行驶稳定性。其次,针对二次编程求解精度不足的问题,提出了带有动态权重和惩罚函数的改进粒子群优化(IPSO)方法。此外,采用标准粒子群优化(PSO)算法离线寻求最合适的时间范围参数,以获得不同车速和附着系数下的最佳时间范围数据集,然后通过基于自适应网络的模糊推理系统(ANFIS)进行在线优化,以增强模型预测控制器在不同工况下的适应性。最后,在三种不同的运行条件下进行了仿真实验:对接道路、分离道路和车辆变速。结果表明,所设计的自适应 MPC 控制器能在各种情况下准确、稳定地跟踪参考轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Path tracking control of automated vehicles based on adaptive MPC in variable scenarios

For complex and dynamic high-speed driving scenarios, an adaptive model predictive control (MPC) controller is designed to ensure effective path tracking for automated vehicles. Firstly, in order to prevent model mismatch in the MPC controller, a tire cornering stiffness estimation algorithm is designed and a soft constraint on slip angle is added to further enhance the controller's precision in tracking trajectories and the vehicle's driving stability. Secondly, the improved particle swarm optimization (IPSO) method with dynamic weights and penalty functions is suggested to address the issue of insufficient accuracy in solving quadratic programming. Additionally, the standard particle swarm optimization (PSO) algorithm is used to seek the most suitable time horizon parameters offline to obtain the best time horizon data set under different vehicle speeds and adhesion coefficients, and then it is optimized online by an adaptive network-based fuzzy inference system (ANFIS) to enhance the model predictive controller's adaptability in different operating conditions. Finally, simulation experiments are conducted under three different operating conditions: docked roads, split roads, and variable vehicle speeds. The results indicate that the designed adaptive MPC controller can accurately and stably track the reference trajectory in various scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Exploring changes in residents' daily activity patterns through sequence visualization analysis ADWNet: An improved detector based on YOLOv8 for application in adverse weather for autonomous driving Creep slope estimation for assessing adhesion in the wheel/rail contact Evaluation of large-scale cycling environment by using the trajectory data of dockless shared bicycles: A data-driven approach Driver distraction and fatigue detection in images using ME-YOLOv8 algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1