小型 SUV 的模态分析和流量控制

IF 2 3区 工程技术 Q3 MECHANICS Flow, Turbulence and Combustion Pub Date : 2024-01-29 DOI:10.1007/s10494-023-00525-z
{"title":"小型 SUV 的模态分析和流量控制","authors":"","doi":"10.1007/s10494-023-00525-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this work, the aerodynamic performances of a reduced scale vehicle characterized by a fully detached flow on the rear end and measured in a wind tunnel, are investigated in order to check the efficiency of active flow control using pulsed jets, implemented on the rear bumper. Here, the pressure increase on the tailgate by the optimum blowing conditions is confirmed with drag forces reduction, measured using a force balance. This flow control result is obtained using a genetic algorithm technique with a reactive loop. Integral scales of the pressure spectra and characteristics of the vortex structures enable then to propose a flow control model applied to set the amplitude and the frequency of the pulsed jets. The understanding of the pressure increase on the tailgate involves cross correlations with velocity fields on specific cut planes in the wake. Amplitudes of dynamic modes linked to the instantaneous pressure and velocity fields enable to check the most efficient blowing frequencies related to the jet location. The Dynamic Modal Decomposition (DMD) technique is used to get these modes and could be introduced in the optimisation loop in order to improve the energy efficiency of this active flow control system.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modal Analysis and Flow Control on a Reduced Scale SUV\",\"authors\":\"\",\"doi\":\"10.1007/s10494-023-00525-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this work, the aerodynamic performances of a reduced scale vehicle characterized by a fully detached flow on the rear end and measured in a wind tunnel, are investigated in order to check the efficiency of active flow control using pulsed jets, implemented on the rear bumper. Here, the pressure increase on the tailgate by the optimum blowing conditions is confirmed with drag forces reduction, measured using a force balance. This flow control result is obtained using a genetic algorithm technique with a reactive loop. Integral scales of the pressure spectra and characteristics of the vortex structures enable then to propose a flow control model applied to set the amplitude and the frequency of the pulsed jets. The understanding of the pressure increase on the tailgate involves cross correlations with velocity fields on specific cut planes in the wake. Amplitudes of dynamic modes linked to the instantaneous pressure and velocity fields enable to check the most efficient blowing frequencies related to the jet location. The Dynamic Modal Decomposition (DMD) technique is used to get these modes and could be introduced in the optimisation loop in order to improve the energy efficiency of this active flow control system.</p>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10494-023-00525-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10494-023-00525-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在这项工作中,研究了一种缩小比例的车辆的空气动力性能,其特点是尾部的气流完全分离,并在风洞中进行了测量,以检查在后保险杠上使用脉冲喷射器进行主动气流控制的效率。在此,通过使用力平衡测量,证实了在最佳喷气条件下尾部压力的增加和阻力的减少。这一流量控制结果是利用带有反应回路的遗传算法技术获得的。压力频谱和涡流结构特征的综合尺度使我们能够提出一个流动控制模型,用于设置脉冲喷流的振幅和频率。对尾流压力增加的理解涉及与尾流特定切面上的速度场的交叉相关性。与瞬时压力场和速度场相关的动态模态振幅可以检查与喷流位置相关的最有效喷流频率。动态模态分解(DMD)技术可用于获得这些模态,并可引入优化环路,以提高主动流控制系统的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modal Analysis and Flow Control on a Reduced Scale SUV

Abstract

In this work, the aerodynamic performances of a reduced scale vehicle characterized by a fully detached flow on the rear end and measured in a wind tunnel, are investigated in order to check the efficiency of active flow control using pulsed jets, implemented on the rear bumper. Here, the pressure increase on the tailgate by the optimum blowing conditions is confirmed with drag forces reduction, measured using a force balance. This flow control result is obtained using a genetic algorithm technique with a reactive loop. Integral scales of the pressure spectra and characteristics of the vortex structures enable then to propose a flow control model applied to set the amplitude and the frequency of the pulsed jets. The understanding of the pressure increase on the tailgate involves cross correlations with velocity fields on specific cut planes in the wake. Amplitudes of dynamic modes linked to the instantaneous pressure and velocity fields enable to check the most efficient blowing frequencies related to the jet location. The Dynamic Modal Decomposition (DMD) technique is used to get these modes and could be introduced in the optimisation loop in order to improve the energy efficiency of this active flow control system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
期刊最新文献
Spatial Averaging Effects in Adverse Pressure Gradient Turbulent Boundary Layers LES of Biomass Syngas Combustion in a Swirl Stabilised Burner: Model Validation and Predictions A Comparison of Evaluation Methodologies of the Fractal Dimension of Premixed Turbulent Flames in 2D and 3D Using Direct Numerical Simulation Data Instability Modes and Scaling Analysis During Electro-Hydro-Dynamic-Atomization: Theoretical and Experimental Study Assessment of Wall Modeling With Adverse Pressure Gradient for High Reynolds Number Separated Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1