{"title":"氮氧化物的连续流合成","authors":"Adam T. McCormack, John C. Stephens","doi":"10.1007/s41981-024-00307-2","DOIUrl":null,"url":null,"abstract":"<div><p>Azo compounds find use in many areas of science, displaying crucial properties for important applications as photoconductive organic pigments, fluorescent quenchers, paints, cosmetics, inks, and in the large and valuable dye industry. Due to the unstable intermediates, and the exothermic and fast reactions used in their synthesis, high value azo compounds are excellent candidates for continuous flow manufacturing. This comprehensive review covers the progress made to date on developing continuous flow systems for azo synthesis and reflects on the main challenges still to be addressed, including scale up, conversion, product purity, and environmental impact. The further development of integrated continuous flow processes has the potential to help tackle these challenges and deliver improved methods for azo compound generation.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 2","pages":"377 - 396"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-024-00307-2.pdf","citationCount":"0","resultStr":"{\"title\":\"The continuous flow synthesis of azos\",\"authors\":\"Adam T. McCormack, John C. Stephens\",\"doi\":\"10.1007/s41981-024-00307-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Azo compounds find use in many areas of science, displaying crucial properties for important applications as photoconductive organic pigments, fluorescent quenchers, paints, cosmetics, inks, and in the large and valuable dye industry. Due to the unstable intermediates, and the exothermic and fast reactions used in their synthesis, high value azo compounds are excellent candidates for continuous flow manufacturing. This comprehensive review covers the progress made to date on developing continuous flow systems for azo synthesis and reflects on the main challenges still to be addressed, including scale up, conversion, product purity, and environmental impact. The further development of integrated continuous flow processes has the potential to help tackle these challenges and deliver improved methods for azo compound generation.</p></div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"14 2\",\"pages\":\"377 - 396\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41981-024-00307-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-024-00307-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-024-00307-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Azo compounds find use in many areas of science, displaying crucial properties for important applications as photoconductive organic pigments, fluorescent quenchers, paints, cosmetics, inks, and in the large and valuable dye industry. Due to the unstable intermediates, and the exothermic and fast reactions used in their synthesis, high value azo compounds are excellent candidates for continuous flow manufacturing. This comprehensive review covers the progress made to date on developing continuous flow systems for azo synthesis and reflects on the main challenges still to be addressed, including scale up, conversion, product purity, and environmental impact. The further development of integrated continuous flow processes has the potential to help tackle these challenges and deliver improved methods for azo compound generation.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.