将人工智能驱动的营销分析技术融入课堂:提高学生参与度和未来商业成功的教学策略

IF 4 Q2 BUSINESS Journal of Marketing Analytics Pub Date : 2024-01-27 DOI:10.1057/s41270-023-00281-z
Kamaal Allil
{"title":"将人工智能驱动的营销分析技术融入课堂:提高学生参与度和未来商业成功的教学策略","authors":"Kamaal Allil","doi":"10.1057/s41270-023-00281-z","DOIUrl":null,"url":null,"abstract":"<p>This paper outlines a practical pedagogical framework for integrating AI-driven analytics into marketing education, tailored to equip students for the fast-evolving industry. Central to this approach is an iterative model that adapts teaching strategies to keep pace with technological advancements and industry demands. The framework emphasizes practical application, steering curriculum development towards the inclusion of AI tools like machine learning and predictive analytics, and crafting experiential learning opportunities. A focused examination of current teaching methods reveals gaps and introduces actionable solutions for fostering analytical skills essential for the AI-enhanced marketing landscape. The model not only advocates for a balance between theory and practice but also addresses challenges such as resource accessibility and the necessity of ethical considerations in AI education. By promoting interdisciplinary collaboration and continual curriculum refreshment, the paper positions the model as an essential blueprint for nurturing future marketing professionals capable of leveraging AI analytics for strategic decision-making. The conclusion calls for academia-industry partnerships to further enrich marketing education and underscores the importance of this framework in preparing students for successful careers in AI-driven marketing.</p>","PeriodicalId":43041,"journal":{"name":"Journal of Marketing Analytics","volume":"24 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating AI-driven marketing analytics techniques into the classroom: pedagogical strategies for enhancing student engagement and future business success\",\"authors\":\"Kamaal Allil\",\"doi\":\"10.1057/s41270-023-00281-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper outlines a practical pedagogical framework for integrating AI-driven analytics into marketing education, tailored to equip students for the fast-evolving industry. Central to this approach is an iterative model that adapts teaching strategies to keep pace with technological advancements and industry demands. The framework emphasizes practical application, steering curriculum development towards the inclusion of AI tools like machine learning and predictive analytics, and crafting experiential learning opportunities. A focused examination of current teaching methods reveals gaps and introduces actionable solutions for fostering analytical skills essential for the AI-enhanced marketing landscape. The model not only advocates for a balance between theory and practice but also addresses challenges such as resource accessibility and the necessity of ethical considerations in AI education. By promoting interdisciplinary collaboration and continual curriculum refreshment, the paper positions the model as an essential blueprint for nurturing future marketing professionals capable of leveraging AI analytics for strategic decision-making. The conclusion calls for academia-industry partnerships to further enrich marketing education and underscores the importance of this framework in preparing students for successful careers in AI-driven marketing.</p>\",\"PeriodicalId\":43041,\"journal\":{\"name\":\"Journal of Marketing Analytics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marketing Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1057/s41270-023-00281-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marketing Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1057/s41270-023-00281-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了将人工智能驱动的分析技术融入市场营销教育的实用教学框架,旨在让学生为快速发展的行业做好准备。这种方法的核心是一个迭代模型,它能调整教学策略,跟上技术进步和行业需求的步伐。该框架强调实际应用,引导课程开发纳入机器学习和预测分析等人工智能工具,并精心设计体验式学习机会。对当前教学方法的重点检查揭示了差距,并为培养人工智能增强型营销所必需的分析技能提出了可行的解决方案。该模式不仅倡导理论与实践之间的平衡,还解决了人工智能教育中资源可获取性和道德考量必要性等挑战。通过促进跨学科合作和不断更新课程,论文将该模式定位为培养未来营销专业人才的重要蓝图,这些人才能够利用人工智能分析进行战略决策。结论呼吁学术界与产业界合作,进一步丰富市场营销教育,并强调了这一框架在培养学生成功从事人工智能驱动的市场营销职业方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating AI-driven marketing analytics techniques into the classroom: pedagogical strategies for enhancing student engagement and future business success

This paper outlines a practical pedagogical framework for integrating AI-driven analytics into marketing education, tailored to equip students for the fast-evolving industry. Central to this approach is an iterative model that adapts teaching strategies to keep pace with technological advancements and industry demands. The framework emphasizes practical application, steering curriculum development towards the inclusion of AI tools like machine learning and predictive analytics, and crafting experiential learning opportunities. A focused examination of current teaching methods reveals gaps and introduces actionable solutions for fostering analytical skills essential for the AI-enhanced marketing landscape. The model not only advocates for a balance between theory and practice but also addresses challenges such as resource accessibility and the necessity of ethical considerations in AI education. By promoting interdisciplinary collaboration and continual curriculum refreshment, the paper positions the model as an essential blueprint for nurturing future marketing professionals capable of leveraging AI analytics for strategic decision-making. The conclusion calls for academia-industry partnerships to further enrich marketing education and underscores the importance of this framework in preparing students for successful careers in AI-driven marketing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
16.70%
发文量
46
期刊介绍: Data has become the new ore in today’s knowledge economy. However, merely storing and reporting are not enough to thrive in today’s increasingly competitive markets. What is called for is the ability to make sense of all these oceans of data, and to apply those insights to the way companies approach their markets, adjust to changing market conditions, and respond to new competitors. Marketing analytics lies at the heart of this contemporary wave of data driven decision-making. Companies can no longer survive when they rely on gut instinct to make decisions. Strategic leverage of data is one of the few remaining sources of sustainable competitive advantage. New products can be copied faster than ever before. Staff are becoming less loyal as well as more mobile, and business centers themselves are moving across the globe in a world that is getting flatter and flatter. The Journal of Marketing Analytics brings together applied research and practice papers in this blossoming field. A unique blend of applied academic research, combined with insights from commercial best practices makes the Journal of Marketing Analytics a perfect companion for academics and practitioners alike. Academics can stay in touch with the latest developments in this field. Marketing analytics professionals can read about the latest trends, and cutting edge academic research in this discipline. The Journal of Marketing Analytics will feature applied research papers on topics like targeting, segmentation, big data, customer loyalty and lifecycle management, cross-selling, CRM, data quality management, multi-channel marketing, and marketing strategy. The Journal of Marketing Analytics aims to combine the rigor of carefully controlled scientific research methods with applicability of real world case studies. Our double blind review process ensures that papers are selected on their content and merits alone, selecting the best possible papers in this field.
期刊最新文献
How does risk interplay with trust in pre-and post-purchase intention to engage: PLS-SEM and ML classification approach Navigating computational linguistic in marketing practices: The barriers of natural language processing in social media marketing and a path to future research How did consumers retail purchasing expectations and behaviour switch due to the COVID-19 pandemic? Navigating airline disruptions with strategic pilot planning: an optimization approach for long-term workforce efficiency and service quality Consumer (brand) happiness of premium fashion brands and value consciousness: The case of clothing and footwear for Gen X and Gen Z as shoppers via digital platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1