在基底集成的等离子体波导中设计紧凑、小型化的单元单元

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of RF and Microwave Computer-Aided Engineering Pub Date : 2024-01-11 DOI:10.1155/2024/5149636
Salma Mirhadi, Zahra Javidi, Nader Komjani
{"title":"在基底集成的等离子体波导中设计紧凑、小型化的单元单元","authors":"Salma Mirhadi,&nbsp;Zahra Javidi,&nbsp;Nader Komjani","doi":"10.1155/2024/5149636","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper presents a novel procedure to design a compact and miniaturized unit cell in the substrate integrated plasmonic waveguide (SIPW) structures. The slot of the unit cell is automatically obtained in this method without needing any prior knowledge of its shape. The method is based on topology optimization through pixelization of the slot surface in the unit cell and uses a combination of binary particle swarm optimization (BPSO) and commercial electromagnetic (EM) software. With this method, first, the shapes of the two unit cells are engineered to arbitrarily reduce the high cut-off frequency. Then, two low-pass filters consisting of the proposed unit cells are designed and simulated. To further verify the proposed procedure, one of the filters is fabricated, whose measurement results are in good agreement with the simulation results. This filter provides a pass band of 5.6 to 6.3 GHz and has dimensions of 0.82<i>λ</i><sub><i>g</i></sub> × 0.22<i>λ</i><sub><i>g</i></sub>. The proposed method has the potential to minimize microwave and terahertz devices.</p>\n </div>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5149636","citationCount":"0","resultStr":"{\"title\":\"Design a Compact and Miniaturized Unit Cell in Substrate Integrated Plasmonic Waveguides\",\"authors\":\"Salma Mirhadi,&nbsp;Zahra Javidi,&nbsp;Nader Komjani\",\"doi\":\"10.1155/2024/5149636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>This paper presents a novel procedure to design a compact and miniaturized unit cell in the substrate integrated plasmonic waveguide (SIPW) structures. The slot of the unit cell is automatically obtained in this method without needing any prior knowledge of its shape. The method is based on topology optimization through pixelization of the slot surface in the unit cell and uses a combination of binary particle swarm optimization (BPSO) and commercial electromagnetic (EM) software. With this method, first, the shapes of the two unit cells are engineered to arbitrarily reduce the high cut-off frequency. Then, two low-pass filters consisting of the proposed unit cells are designed and simulated. To further verify the proposed procedure, one of the filters is fabricated, whose measurement results are in good agreement with the simulation results. This filter provides a pass band of 5.6 to 6.3 GHz and has dimensions of 0.82<i>λ</i><sub><i>g</i></sub> × 0.22<i>λ</i><sub><i>g</i></sub>. The proposed method has the potential to minimize microwave and terahertz devices.</p>\\n </div>\",\"PeriodicalId\":54944,\"journal\":{\"name\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5149636\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5149636\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5149636","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种设计基底集成等离子体波导(SIPW)结构中紧凑型和微型化单元单元的新程序。该方法可自动获得单元单元的槽,而无需事先了解其形状。该方法基于拓扑优化,通过对单元槽表面进行像素化处理,并结合使用了二进制粒子群优化(BPSO)和商用电磁(EM)软件。采用这种方法时,首先要设计两个单元的形状,以任意降低高截止频率。然后,设计并仿真由所提单元组成的两个低通滤波器。为了进一步验证所提出的方法,我们制作了其中一个滤波器,其测量结果与模拟结果十分吻合。该滤波器的通频带为 5.6 至 6.3 GHz,尺寸为 0.82λg×0.22λg。所提出的方法有可能最大限度地减少微波和太赫兹器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design a Compact and Miniaturized Unit Cell in Substrate Integrated Plasmonic Waveguides

This paper presents a novel procedure to design a compact and miniaturized unit cell in the substrate integrated plasmonic waveguide (SIPW) structures. The slot of the unit cell is automatically obtained in this method without needing any prior knowledge of its shape. The method is based on topology optimization through pixelization of the slot surface in the unit cell and uses a combination of binary particle swarm optimization (BPSO) and commercial electromagnetic (EM) software. With this method, first, the shapes of the two unit cells are engineered to arbitrarily reduce the high cut-off frequency. Then, two low-pass filters consisting of the proposed unit cells are designed and simulated. To further verify the proposed procedure, one of the filters is fabricated, whose measurement results are in good agreement with the simulation results. This filter provides a pass band of 5.6 to 6.3 GHz and has dimensions of 0.82λg × 0.22λg. The proposed method has the potential to minimize microwave and terahertz devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
23.50%
发文量
489
审稿时长
3 months
期刊介绍: International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology. Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . . -Computer-Aided Modeling -Computer-Aided Analysis -Computer-Aided Optimization -Software and Manufacturing Techniques -Computer-Aided Measurements -Measurements Interfaced with CAD Systems In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.
期刊最新文献
A Fast Electromagnetic Radiation Simulation Tool for Finite Periodic Array Antenna and Universal Array Antenna A Broadband RCS Reduction Coating Using a Novel Arrangement of Metasurface Unit Cells Based on Two Substrates BNN-LSTM-DE Surrogate Model–Assisted Antenna Optimization Method Based on Data Selection A Spaceborne Ka-Band Earth-Coverage Phased Array Antenna Based on DBF-Shared Subarray for LEO Communications A Wideband High-Efficiency Dual-Polarized Metal-Only Reflectarray Antenna Using Folded Groove Elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1