在多级 NAND 闪存设备中设计嵌入式 BCH 纠错码的趋势和挑战

Saeideh Nabipour , Javad Javidan , Rolf Drechsler
{"title":"在多级 NAND 闪存设备中设计嵌入式 BCH 纠错码的趋势和挑战","authors":"Saeideh Nabipour ,&nbsp;Javad Javidan ,&nbsp;Rolf Drechsler","doi":"10.1016/j.memori.2024.100099","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, there has been a growing concern regarding the dependability of NAND flash cells, notably as the scale of their features reduces. To address this issue, implementing error correction codes (ECC) proves to be an effective solution. Among the various methods, BCH coding has gained significant interest because of its exceptional error correction capabilities. Over the last decades, there has been much research on BCH decoder design to meet the demand for reduced hardware complexities, minimized delay performance, and lower power dissipation to enable BCH decoders and their VLSI implementations to facilitate different code lengths and rates of code. This paper surveys the trends and challenges associated with BCH decoder in NAND flash memory devices, the possible solutions for overcoming of time and area overhead in architecture of BCH decoder block and an examination of the extent to which present architectures will respond to the escalating requirements on data transfer rate, bit error rate (BER) performance, power consumption, and silicon area that will be essential for the extensive acceptance of BCH code in applications that will emerge in the near future. To demonstrate the need for such solutions, we present rigorous experimental data on BCH error correction codes on various types of flash memory errors, to motivate the need for such techniques. Based on the understanding developed by the experimental characterization, we describe several area-delay efficient techniques, including three low-latency decoding strategies for implementing the BCH decoder: pipeline method, re-encoding scheme, and parallelization method, and various hardware optimization strategies for the BCH decoder, such as three area-efficient syndrome block architectures, four error locator polynomial detection algorithms, and four error position identification algorithms using the Chien search method. We investigate the increase in reliability that each of these methods brings. We also briefly address future directions that these methods and flash memory techniques could evolve into the future.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"7 ","pages":"Article 100099"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277306462400001X/pdfft?md5=b040c28930a49cd5377dfcc947483cc1&pid=1-s2.0-S277306462400001X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Trends and challenges in design of embedded BCH error correction codes in multi-levels NAND flash memory devices\",\"authors\":\"Saeideh Nabipour ,&nbsp;Javad Javidan ,&nbsp;Rolf Drechsler\",\"doi\":\"10.1016/j.memori.2024.100099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, there has been a growing concern regarding the dependability of NAND flash cells, notably as the scale of their features reduces. To address this issue, implementing error correction codes (ECC) proves to be an effective solution. Among the various methods, BCH coding has gained significant interest because of its exceptional error correction capabilities. Over the last decades, there has been much research on BCH decoder design to meet the demand for reduced hardware complexities, minimized delay performance, and lower power dissipation to enable BCH decoders and their VLSI implementations to facilitate different code lengths and rates of code. This paper surveys the trends and challenges associated with BCH decoder in NAND flash memory devices, the possible solutions for overcoming of time and area overhead in architecture of BCH decoder block and an examination of the extent to which present architectures will respond to the escalating requirements on data transfer rate, bit error rate (BER) performance, power consumption, and silicon area that will be essential for the extensive acceptance of BCH code in applications that will emerge in the near future. To demonstrate the need for such solutions, we present rigorous experimental data on BCH error correction codes on various types of flash memory errors, to motivate the need for such techniques. Based on the understanding developed by the experimental characterization, we describe several area-delay efficient techniques, including three low-latency decoding strategies for implementing the BCH decoder: pipeline method, re-encoding scheme, and parallelization method, and various hardware optimization strategies for the BCH decoder, such as three area-efficient syndrome block architectures, four error locator polynomial detection algorithms, and four error position identification algorithms using the Chien search method. We investigate the increase in reliability that each of these methods brings. We also briefly address future directions that these methods and flash memory techniques could evolve into the future.</p></div>\",\"PeriodicalId\":100915,\"journal\":{\"name\":\"Memories - Materials, Devices, Circuits and Systems\",\"volume\":\"7 \",\"pages\":\"Article 100099\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277306462400001X/pdfft?md5=b040c28930a49cd5377dfcc947483cc1&pid=1-s2.0-S277306462400001X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memories - Materials, Devices, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277306462400001X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277306462400001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,人们越来越关注 NAND 闪存单元的可靠性,特别是随着其功能规模的缩小。为解决这一问题,实施纠错码 (ECC) 被证明是一种有效的解决方案。在各种方法中,BCH 编码因其卓越的纠错能力而备受关注。在过去的几十年中,为了满足降低硬件复杂性、最大限度地减少延迟性能和降低功耗的需求,BCH 解码器及其 VLSI 实现已经在 BCH 解码器设计方面开展了大量研究,以促进不同码长和码率的编码。本文探讨了与 NAND 闪存设备中 BCH 解码器相关的趋势和挑战、克服 BCH 解码器模块架构中时间和面积开销的可能解决方案,并研究了现有架构在多大程度上能满足对数据传输速率、误码率 (BER) 性能、功耗和硅面积不断提高的要求,这些要求对 BCH 代码在不久的将来出现的应用中被广泛接受至关重要。为了证明此类解决方案的必要性,我们提供了 BCH 纠错码在各种闪存错误上的严格实验数据,以激发对此类技术的需求。基于对实验特征的理解,我们介绍了几种面积-延迟高效技术,包括实现 BCH 解码器的三种低延迟解码策略:流水线方法、重编码方案和并行化方法,以及 BCH 解码器的各种硬件优化策略,如三种面积高效综合征块架构、四种错误定位器多项式检测算法和四种使用 Chien 搜索方法的错误位置识别算法。我们研究了每种方法带来的可靠性提升。我们还简要讨论了这些方法和闪存技术未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trends and challenges in design of embedded BCH error correction codes in multi-levels NAND flash memory devices

Recently, there has been a growing concern regarding the dependability of NAND flash cells, notably as the scale of their features reduces. To address this issue, implementing error correction codes (ECC) proves to be an effective solution. Among the various methods, BCH coding has gained significant interest because of its exceptional error correction capabilities. Over the last decades, there has been much research on BCH decoder design to meet the demand for reduced hardware complexities, minimized delay performance, and lower power dissipation to enable BCH decoders and their VLSI implementations to facilitate different code lengths and rates of code. This paper surveys the trends and challenges associated with BCH decoder in NAND flash memory devices, the possible solutions for overcoming of time and area overhead in architecture of BCH decoder block and an examination of the extent to which present architectures will respond to the escalating requirements on data transfer rate, bit error rate (BER) performance, power consumption, and silicon area that will be essential for the extensive acceptance of BCH code in applications that will emerge in the near future. To demonstrate the need for such solutions, we present rigorous experimental data on BCH error correction codes on various types of flash memory errors, to motivate the need for such techniques. Based on the understanding developed by the experimental characterization, we describe several area-delay efficient techniques, including three low-latency decoding strategies for implementing the BCH decoder: pipeline method, re-encoding scheme, and parallelization method, and various hardware optimization strategies for the BCH decoder, such as three area-efficient syndrome block architectures, four error locator polynomial detection algorithms, and four error position identification algorithms using the Chien search method. We investigate the increase in reliability that each of these methods brings. We also briefly address future directions that these methods and flash memory techniques could evolve into the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an analog topology for a multi-layer neuronal network A graphene-based toxic detection approach Optimization of deep learning algorithms for large digital data processing using evolutionary neural networks The application of organic materials used in IC advanced packaging:A review Design and evaluation of clock-gating-based approximate multiplier for error-tolerant applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1