Hao Tang , Chaofeng Gao , Xiaoying Xi , Jiantao Zhang , Xingyi Li , Zhiyu Xiao , Jeremy Heng Rao
{"title":"通过高体积密度的 L12 纳米沉淀物实现激光粉末床熔融 TiN 纳米粒子增强 AlMnMgScZr 复合材料的超高强度","authors":"Hao Tang , Chaofeng Gao , Xiaoying Xi , Jiantao Zhang , Xingyi Li , Zhiyu Xiao , Jeremy Heng Rao","doi":"10.1016/j.addlet.2024.100198","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a novel design strategy for <span>l</span>-PBFed AlMnMgScZr/TiN composites with ultrahigh strength was proposed. TiN particles can not only function as ceramic reinforcement, but also decompose and reprecipitate to form a large density of L1<sub>2</sub>-precipitates at a high melting temperature during <span>l</span>-PBF. Meanwhile, the primary L1<sub>2</sub>-Al<sub>3</sub>X (<em>X</em>=Ti/Sc/Zr) phase promotes the columnar-to-equiaxed grain transition effect, creating a fine bi-modal grain structure in the as-built sample. A high volume fraction of L1<sub>2</sub> nanoparticles are additionally precipitated from Al matrix during post heat treatment. In this regard, effective grain refinement and precipitation hardening mechanism contribute to an excellent tensile performance with a combination of an ultimate tensile strength of 681±4 MPa, a yield strength of 677±4 MPa, and an elongation rate of 5.4 ± 1.2%. The yield strength of 677 MPa is particularly the highest among all previously reported <span>l</span>-PBFed Al matrix composites and Al alloys.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000070/pdfft?md5=890033fade8dbfb8be12c1fcccbdaa09&pid=1-s2.0-S2772369024000070-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Achieving ultra-high strength of laser powder bed fusion TiN nanoparticles reinforced AlMnMgScZr composite via a high volume density of L12-nanoprecipitates\",\"authors\":\"Hao Tang , Chaofeng Gao , Xiaoying Xi , Jiantao Zhang , Xingyi Li , Zhiyu Xiao , Jeremy Heng Rao\",\"doi\":\"10.1016/j.addlet.2024.100198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a novel design strategy for <span>l</span>-PBFed AlMnMgScZr/TiN composites with ultrahigh strength was proposed. TiN particles can not only function as ceramic reinforcement, but also decompose and reprecipitate to form a large density of L1<sub>2</sub>-precipitates at a high melting temperature during <span>l</span>-PBF. Meanwhile, the primary L1<sub>2</sub>-Al<sub>3</sub>X (<em>X</em>=Ti/Sc/Zr) phase promotes the columnar-to-equiaxed grain transition effect, creating a fine bi-modal grain structure in the as-built sample. A high volume fraction of L1<sub>2</sub> nanoparticles are additionally precipitated from Al matrix during post heat treatment. In this regard, effective grain refinement and precipitation hardening mechanism contribute to an excellent tensile performance with a combination of an ultimate tensile strength of 681±4 MPa, a yield strength of 677±4 MPa, and an elongation rate of 5.4 ± 1.2%. The yield strength of 677 MPa is particularly the highest among all previously reported <span>l</span>-PBFed Al matrix composites and Al alloys.</p></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772369024000070/pdfft?md5=890033fade8dbfb8be12c1fcccbdaa09&pid=1-s2.0-S2772369024000070-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369024000070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Achieving ultra-high strength of laser powder bed fusion TiN nanoparticles reinforced AlMnMgScZr composite via a high volume density of L12-nanoprecipitates
In this paper, a novel design strategy for l-PBFed AlMnMgScZr/TiN composites with ultrahigh strength was proposed. TiN particles can not only function as ceramic reinforcement, but also decompose and reprecipitate to form a large density of L12-precipitates at a high melting temperature during l-PBF. Meanwhile, the primary L12-Al3X (X=Ti/Sc/Zr) phase promotes the columnar-to-equiaxed grain transition effect, creating a fine bi-modal grain structure in the as-built sample. A high volume fraction of L12 nanoparticles are additionally precipitated from Al matrix during post heat treatment. In this regard, effective grain refinement and precipitation hardening mechanism contribute to an excellent tensile performance with a combination of an ultimate tensile strength of 681±4 MPa, a yield strength of 677±4 MPa, and an elongation rate of 5.4 ± 1.2%. The yield strength of 677 MPa is particularly the highest among all previously reported l-PBFed Al matrix composites and Al alloys.