{"title":"根据大型生物质颗粒热解过程中的温度演变历史,发现 TDP 和 PRP 并确定其强度特征","authors":"Rui Chen , Jun Cai , Xinli Li , Xiaobin Qi","doi":"10.1016/j.crcon.2024.100223","DOIUrl":null,"url":null,"abstract":"<div><p>The pyrolysis behaviors and temperature evolution history of lignocellulosic biomass (Beech, BH) were characterized using a novel pyrolysis model—C-DAEM. The simulation results were validated through corresponding experimental data. Based on the simulation results, two distinct peaks were observed in the temperature difference between the surface and center (TDSC) curve, namely the thermal disturbance peak (TDP) and the pyrolysis reaction peak (PRP). The presence of TDP and PRP was confirmed by examining the heat flux ratio between the pyrolysis rate and the temperature rise rate. Moreover, the results indicated that three factors, namely heating temperature, particle size, and pyrolysis rate, influenced the relative intensity between TDP and PRP. By changing the values of each impact factor, conditions where TDP owns the same height with PRP were obtained under different working conditions. These findings have led to the development of a dimensionless number, naming the pyrolysis-heating surface-center number (PH<sub>SC</sub> number). This number could provide a comprehensive indication of the collective impact of the aforementioned factors when TDP and PRP exhibit equal peak heights.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 3","pages":"Article 100223"},"PeriodicalIF":6.4000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913324000127/pdfft?md5=793346a309a87319c78d3b9a8fbebc68&pid=1-s2.0-S2588913324000127-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Discovery and intensity characterization of TDP and PRP based on temperature evolution history during the pyrolysis for large biomass particle\",\"authors\":\"Rui Chen , Jun Cai , Xinli Li , Xiaobin Qi\",\"doi\":\"10.1016/j.crcon.2024.100223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The pyrolysis behaviors and temperature evolution history of lignocellulosic biomass (Beech, BH) were characterized using a novel pyrolysis model—C-DAEM. The simulation results were validated through corresponding experimental data. Based on the simulation results, two distinct peaks were observed in the temperature difference between the surface and center (TDSC) curve, namely the thermal disturbance peak (TDP) and the pyrolysis reaction peak (PRP). The presence of TDP and PRP was confirmed by examining the heat flux ratio between the pyrolysis rate and the temperature rise rate. Moreover, the results indicated that three factors, namely heating temperature, particle size, and pyrolysis rate, influenced the relative intensity between TDP and PRP. By changing the values of each impact factor, conditions where TDP owns the same height with PRP were obtained under different working conditions. These findings have led to the development of a dimensionless number, naming the pyrolysis-heating surface-center number (PH<sub>SC</sub> number). This number could provide a comprehensive indication of the collective impact of the aforementioned factors when TDP and PRP exhibit equal peak heights.</p></div>\",\"PeriodicalId\":52958,\"journal\":{\"name\":\"Carbon Resources Conversion\",\"volume\":\"7 3\",\"pages\":\"Article 100223\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588913324000127/pdfft?md5=793346a309a87319c78d3b9a8fbebc68&pid=1-s2.0-S2588913324000127-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Resources Conversion\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588913324000127\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913324000127","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Discovery and intensity characterization of TDP and PRP based on temperature evolution history during the pyrolysis for large biomass particle
The pyrolysis behaviors and temperature evolution history of lignocellulosic biomass (Beech, BH) were characterized using a novel pyrolysis model—C-DAEM. The simulation results were validated through corresponding experimental data. Based on the simulation results, two distinct peaks were observed in the temperature difference between the surface and center (TDSC) curve, namely the thermal disturbance peak (TDP) and the pyrolysis reaction peak (PRP). The presence of TDP and PRP was confirmed by examining the heat flux ratio between the pyrolysis rate and the temperature rise rate. Moreover, the results indicated that three factors, namely heating temperature, particle size, and pyrolysis rate, influenced the relative intensity between TDP and PRP. By changing the values of each impact factor, conditions where TDP owns the same height with PRP were obtained under different working conditions. These findings have led to the development of a dimensionless number, naming the pyrolysis-heating surface-center number (PHSC number). This number could provide a comprehensive indication of the collective impact of the aforementioned factors when TDP and PRP exhibit equal peak heights.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.