高粱无性组织中 Dhurrin 生物合成途径基因的鉴定和表达谱图

IF 1.7 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Reports Pub Date : 2024-01-30 DOI:10.1007/s11816-024-00886-5
Sri Cindhuri Katamreddy, Bommineni Pradeep Reddy, Polavarapu B Kavi Kishor, Are Ashok Kumar, Palakolanu Sudhakar Reddy
{"title":"高粱无性组织中 Dhurrin 生物合成途径基因的鉴定和表达谱图","authors":"Sri Cindhuri Katamreddy, Bommineni Pradeep Reddy, Polavarapu B Kavi Kishor, Are Ashok Kumar, Palakolanu Sudhakar Reddy","doi":"10.1007/s11816-024-00886-5","DOIUrl":null,"url":null,"abstract":"<p>Sorghum is considered a fifth major cereal, widely used as a multipurpose crop worldwide. The use of sorghum as a major forage crop is limited due to cyanogenic glycoside dhurrin in the vegetative shoot tissues. This cyanogenic glycoside is harmful to livestock when fed as fodder. The present study selected three sorghum genotypes for estimating hydrogen cyanide potential (HCNp) in vegetative tissues under well-watered (WW) conditions. The HCNp concentration varied from genotype to genotype and ranged from 364 to 512 ppm. The HCNp estimation was observed more in ICSR 14001 with 511 ppm, followed by ICSV 93046 (443 ppm) and CSH 24 MF (364 ppm). A significant difference was noticed between the genotypes. Sequence information of dhurrin biosynthesis pathway genes was retrieved and characterized using different bioinformatic tools. The gene expression analysis of dhurrin biosynthesis pathway genes showed different expression patterns, with the highest in ICSV 93046 and less in ICSR 14001 and CSH 24 MF. Genes <i>CYP79A1</i>, <i>CYP71E1</i> and <i>UGT85B1</i> showed a 2.5- to 4 fold increase in ICSV 93046 and no significant expression in ICSR 14001 and CSH 24 MF. The genotype CSH 24 MF observed a 1.5-fold increase in <i>CYP79A1</i> gene expression, and the other genes observed no significant increase. This study assisted in identifying the contrasting genotypes inducing HCNp and the key genes of the dhurrin pathway producing hydrogen cyanide (HCN) under WW conditions, which can be used as potential candidates for gene editing, providing safe feed for the livestock.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":"197 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and expression profile of dhurrin biosynthesis pathway genes in sorghum vegetative tissues\",\"authors\":\"Sri Cindhuri Katamreddy, Bommineni Pradeep Reddy, Polavarapu B Kavi Kishor, Are Ashok Kumar, Palakolanu Sudhakar Reddy\",\"doi\":\"10.1007/s11816-024-00886-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sorghum is considered a fifth major cereal, widely used as a multipurpose crop worldwide. The use of sorghum as a major forage crop is limited due to cyanogenic glycoside dhurrin in the vegetative shoot tissues. This cyanogenic glycoside is harmful to livestock when fed as fodder. The present study selected three sorghum genotypes for estimating hydrogen cyanide potential (HCNp) in vegetative tissues under well-watered (WW) conditions. The HCNp concentration varied from genotype to genotype and ranged from 364 to 512 ppm. The HCNp estimation was observed more in ICSR 14001 with 511 ppm, followed by ICSV 93046 (443 ppm) and CSH 24 MF (364 ppm). A significant difference was noticed between the genotypes. Sequence information of dhurrin biosynthesis pathway genes was retrieved and characterized using different bioinformatic tools. The gene expression analysis of dhurrin biosynthesis pathway genes showed different expression patterns, with the highest in ICSV 93046 and less in ICSR 14001 and CSH 24 MF. Genes <i>CYP79A1</i>, <i>CYP71E1</i> and <i>UGT85B1</i> showed a 2.5- to 4 fold increase in ICSV 93046 and no significant expression in ICSR 14001 and CSH 24 MF. The genotype CSH 24 MF observed a 1.5-fold increase in <i>CYP79A1</i> gene expression, and the other genes observed no significant increase. This study assisted in identifying the contrasting genotypes inducing HCNp and the key genes of the dhurrin pathway producing hydrogen cyanide (HCN) under WW conditions, which can be used as potential candidates for gene editing, providing safe feed for the livestock.</p>\",\"PeriodicalId\":20216,\"journal\":{\"name\":\"Plant Biotechnology Reports\",\"volume\":\"197 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11816-024-00886-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-024-00886-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高粱被认为是第五大谷物,在全世界被广泛用作多用途作物。由于高粱的无性枝条组织中含有氰基糖苷 Dhurrin,因此高粱作为主要饲料作物的使用受到了限制。这种氰苷作为饲料喂养牲畜会对牲畜造成危害。本研究选择了三种高粱基因型,以估测其在水分充足(WW)条件下无性组织中的氰化氢含量(HCNp)。不同基因型的 HCNp 浓度不同,范围在 364 至 512 ppm 之间。在 ICSR 14001 中观察到的 HCNp 估计值较高,为 511 ppm,其次是 ICSV 93046(443 ppm)和 CSH 24 MF(364 ppm)。不同基因型之间存在明显差异。利用不同的生物信息学工具检索并鉴定了 Dhurrin 生物合成途径基因的序列信息。Dhurrin 生物合成途径基因的基因表达分析显示出不同的表达模式,在 ICSV 93046 中最高,而在 ICSR 14001 和 CSH 24 MF 中较低。基因 CYP79A1、CYP71E1 和 UGT85B1 在 ICSV 93046 中的表达量增加了 2.5 至 4 倍,而在 ICSR 14001 和 CSH 24 MF 中则没有明显表达。在基因型 CSH 24 MF 中,CYP79A1 基因的表达量增加了 1.5 倍,其他基因的表达量没有明显增加。这项研究有助于确定在 WW 条件下诱导 HCNp 的不同基因型以及产生氰化氢(HCN)的 Dhurrin 通路的关键基因,这些基因型可作为基因编辑的潜在候选基因,为牲畜提供安全饲料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification and expression profile of dhurrin biosynthesis pathway genes in sorghum vegetative tissues

Sorghum is considered a fifth major cereal, widely used as a multipurpose crop worldwide. The use of sorghum as a major forage crop is limited due to cyanogenic glycoside dhurrin in the vegetative shoot tissues. This cyanogenic glycoside is harmful to livestock when fed as fodder. The present study selected three sorghum genotypes for estimating hydrogen cyanide potential (HCNp) in vegetative tissues under well-watered (WW) conditions. The HCNp concentration varied from genotype to genotype and ranged from 364 to 512 ppm. The HCNp estimation was observed more in ICSR 14001 with 511 ppm, followed by ICSV 93046 (443 ppm) and CSH 24 MF (364 ppm). A significant difference was noticed between the genotypes. Sequence information of dhurrin biosynthesis pathway genes was retrieved and characterized using different bioinformatic tools. The gene expression analysis of dhurrin biosynthesis pathway genes showed different expression patterns, with the highest in ICSV 93046 and less in ICSR 14001 and CSH 24 MF. Genes CYP79A1, CYP71E1 and UGT85B1 showed a 2.5- to 4 fold increase in ICSV 93046 and no significant expression in ICSR 14001 and CSH 24 MF. The genotype CSH 24 MF observed a 1.5-fold increase in CYP79A1 gene expression, and the other genes observed no significant increase. This study assisted in identifying the contrasting genotypes inducing HCNp and the key genes of the dhurrin pathway producing hydrogen cyanide (HCN) under WW conditions, which can be used as potential candidates for gene editing, providing safe feed for the livestock.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Biotechnology Reports
Plant Biotechnology Reports 生物-生物工程与应用微生物
CiteScore
4.10
自引率
4.20%
发文量
72
审稿时长
>12 weeks
期刊介绍: Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.
期刊最新文献
Overexpression of CRK4, the cysteine-rich receptor-like protein kinase of Arabidopsis, regulates the resistance to abiotic stress and abscisic acid responses Identification and characterization of a novel Wx-B1 allele in a waxy wheat (Triticum aestivum L.) Molecular characterization of a sweetpotato stress tolerance-associated GDP-L-galactose phosphorylase gene (IbGGP1) in response to abiotic stress Differential expression of sweetpotato nodulin 26-like intrinsic protein (NIP) genes in response to infection with the root knot nematode Identification of key genes regulating macronutrient accumulation and final yield in wheat under potassium deficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1