Vanessa Escalona Hernández, Itzia Irene Padilla-Martínez, Rosa Angeles Vázquez García, María Aurora Veloz Rodríguez, Oscar Javier Hernández-Ortiz
{"title":"合成一种潜在的 DPP 衍生光敏剂,并评估其光物理性质,用于 D-A-D 结构的光动力疗法。","authors":"Vanessa Escalona Hernández, Itzia Irene Padilla-Martínez, Rosa Angeles Vázquez García, María Aurora Veloz Rodríguez, Oscar Javier Hernández-Ortiz","doi":"10.1007/s10856-024-06776-0","DOIUrl":null,"url":null,"abstract":"<p><p>The study of a macromolecule derived from DPP and triphenylamine, (DPP-BisTPA) by computational chemistry, its synthesis by direct arylation, optical characterization (UV-Vis and fluorescence) and electrochemistry (cyclic voltammetry), as well as its evaluation as a generator of reactive oxygen species indirectly, through the degradation of uric acid. The results obtained by DFT using B3LYP/6-31G (d, p) and TD-DFT using CAM-B3LYP/6-31G (d, p) reveal values of energy levels of the first singlet and triplet excited state that indicate a possible intersystem crossover and the possible generation of reactive oxygen species by a type I mechanism. The compound presents an absorption region within the phototherapeutic window. The electrochemical bandgap is 1.64 eV which suggests a behavior as a semiconductor. DPP-BisTPa were processed as hemispherical nanoparticles with a size around 100 nm, and NPOs were evaluated as a photosensitizer with a ROS generation yield of 4% using a photodynamic therapy flashlight as the light source.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"11"},"PeriodicalIF":4.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834609/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis, and evaluation of photophysical properties of a potential DPP-derived photosensitizer for photodynamic therapy with D-A-D architecture.\",\"authors\":\"Vanessa Escalona Hernández, Itzia Irene Padilla-Martínez, Rosa Angeles Vázquez García, María Aurora Veloz Rodríguez, Oscar Javier Hernández-Ortiz\",\"doi\":\"10.1007/s10856-024-06776-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of a macromolecule derived from DPP and triphenylamine, (DPP-BisTPA) by computational chemistry, its synthesis by direct arylation, optical characterization (UV-Vis and fluorescence) and electrochemistry (cyclic voltammetry), as well as its evaluation as a generator of reactive oxygen species indirectly, through the degradation of uric acid. The results obtained by DFT using B3LYP/6-31G (d, p) and TD-DFT using CAM-B3LYP/6-31G (d, p) reveal values of energy levels of the first singlet and triplet excited state that indicate a possible intersystem crossover and the possible generation of reactive oxygen species by a type I mechanism. The compound presents an absorption region within the phototherapeutic window. The electrochemical bandgap is 1.64 eV which suggests a behavior as a semiconductor. DPP-BisTPa were processed as hemispherical nanoparticles with a size around 100 nm, and NPOs were evaluated as a photosensitizer with a ROS generation yield of 4% using a photodynamic therapy flashlight as the light source.</p>\",\"PeriodicalId\":647,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Medicine\",\"volume\":\"35 1\",\"pages\":\"11\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834609/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10856-024-06776-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10856-024-06776-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Synthesis, and evaluation of photophysical properties of a potential DPP-derived photosensitizer for photodynamic therapy with D-A-D architecture.
The study of a macromolecule derived from DPP and triphenylamine, (DPP-BisTPA) by computational chemistry, its synthesis by direct arylation, optical characterization (UV-Vis and fluorescence) and electrochemistry (cyclic voltammetry), as well as its evaluation as a generator of reactive oxygen species indirectly, through the degradation of uric acid. The results obtained by DFT using B3LYP/6-31G (d, p) and TD-DFT using CAM-B3LYP/6-31G (d, p) reveal values of energy levels of the first singlet and triplet excited state that indicate a possible intersystem crossover and the possible generation of reactive oxygen species by a type I mechanism. The compound presents an absorption region within the phototherapeutic window. The electrochemical bandgap is 1.64 eV which suggests a behavior as a semiconductor. DPP-BisTPa were processed as hemispherical nanoparticles with a size around 100 nm, and NPOs were evaluated as a photosensitizer with a ROS generation yield of 4% using a photodynamic therapy flashlight as the light source.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.