{"title":"研究八种机器学习算法在医疗分类任务中对不同特征数据集的适用性","authors":"Yiyan Zhang, Qin Li, Yi Xin","doi":"10.3389/fncom.2024.1345575","DOIUrl":null,"url":null,"abstract":"<p>With the vigorous development of data mining field, more and more algorithms have been proposed or improved. How to quickly select a data mining algorithm that is suitable for data sets in medical field is a challenge for some medical workers. The purpose of this paper is to study the comparative characteristics of the general medical data set and the general data sets in other fields, and find the applicability rules of the data mining algorithm suitable for the characteristics of the current research data set. The study quantified characteristics of the research data set with 26 indicators, including simple indicators, statistical indicators and information theory indicators. Eight machine learning algorithms with high maturity, low user involvement and strong family representation were selected as the base algorithms. The algorithm performances were evaluated by three aspects: prediction accuracy, running speed and memory consumption. By constructing decision tree and stepwise regression model to learn the above metadata, the algorithm applicability knowledge of medical data set is obtained. Through cross-verification, the accuracy of all the algorithm applicability prediction models is above 75%, which proves the validity and feasibility of the applicability knowledge.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on eight machine learning algorithms applicability on different characteristics data sets in medical classification tasks\",\"authors\":\"Yiyan Zhang, Qin Li, Yi Xin\",\"doi\":\"10.3389/fncom.2024.1345575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the vigorous development of data mining field, more and more algorithms have been proposed or improved. How to quickly select a data mining algorithm that is suitable for data sets in medical field is a challenge for some medical workers. The purpose of this paper is to study the comparative characteristics of the general medical data set and the general data sets in other fields, and find the applicability rules of the data mining algorithm suitable for the characteristics of the current research data set. The study quantified characteristics of the research data set with 26 indicators, including simple indicators, statistical indicators and information theory indicators. Eight machine learning algorithms with high maturity, low user involvement and strong family representation were selected as the base algorithms. The algorithm performances were evaluated by three aspects: prediction accuracy, running speed and memory consumption. By constructing decision tree and stepwise regression model to learn the above metadata, the algorithm applicability knowledge of medical data set is obtained. Through cross-verification, the accuracy of all the algorithm applicability prediction models is above 75%, which proves the validity and feasibility of the applicability knowledge.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2024.1345575\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1345575","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Research on eight machine learning algorithms applicability on different characteristics data sets in medical classification tasks
With the vigorous development of data mining field, more and more algorithms have been proposed or improved. How to quickly select a data mining algorithm that is suitable for data sets in medical field is a challenge for some medical workers. The purpose of this paper is to study the comparative characteristics of the general medical data set and the general data sets in other fields, and find the applicability rules of the data mining algorithm suitable for the characteristics of the current research data set. The study quantified characteristics of the research data set with 26 indicators, including simple indicators, statistical indicators and information theory indicators. Eight machine learning algorithms with high maturity, low user involvement and strong family representation were selected as the base algorithms. The algorithm performances were evaluated by three aspects: prediction accuracy, running speed and memory consumption. By constructing decision tree and stepwise regression model to learn the above metadata, the algorithm applicability knowledge of medical data set is obtained. Through cross-verification, the accuracy of all the algorithm applicability prediction models is above 75%, which proves the validity and feasibility of the applicability knowledge.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro