{"title":"冷再生混合料与乳化沥青早期粘附发展过程中的微观结构及强度形成机理","authors":"Xueying Zhao, Baofu Ma","doi":"10.1155/2024/7940655","DOIUrl":null,"url":null,"abstract":"With the large-scale maintenance and renovation of asphalt pavement, a considerable amount of reclaimed asphalt pavement (RAP) will be generated. Stacking these wastes occupies a large amount of land and seriously damages the ecological environment. Hence, efficient regeneration of RAP through recycling technology has gained more and more attention. In this paper, some topics were reviewed to further promote the cold recycling (CR) technology and better follow-up the research progress. First, it discussed the raw materials and the differences and similarities between cement-emulsified asphalt mortar (CEAM) and cold-recycled mixtures with emulsified asphalt (CRME). Second, it reviewed the adhesion development of emulsified asphalt mastic, the application of X-ray technology in microscopic study of CRME and the characteristic of strength development of CRME. The adhesion development of CRME begins with the process of demulsification and hydration caused by the migration and dissipation of water inside the emulsified asphalt mastic. In addition, many factors would influence this process simultaneously. However, the microbehavior mechanism of internal water transport in emulsified asphalt mortar has not yet been thoroughly revealed, and it lacked scientific measurement research on the promoting effect of complex conditions on the development of adhesive properties of mixtures. Therefore, in this paper, they were suggested for future research.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"73 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure in Adhesion Development Process and Strength Formation Mechanism in Early Stage of Cold Recycled Mixture with Emulsified Asphalt\",\"authors\":\"Xueying Zhao, Baofu Ma\",\"doi\":\"10.1155/2024/7940655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the large-scale maintenance and renovation of asphalt pavement, a considerable amount of reclaimed asphalt pavement (RAP) will be generated. Stacking these wastes occupies a large amount of land and seriously damages the ecological environment. Hence, efficient regeneration of RAP through recycling technology has gained more and more attention. In this paper, some topics were reviewed to further promote the cold recycling (CR) technology and better follow-up the research progress. First, it discussed the raw materials and the differences and similarities between cement-emulsified asphalt mortar (CEAM) and cold-recycled mixtures with emulsified asphalt (CRME). Second, it reviewed the adhesion development of emulsified asphalt mastic, the application of X-ray technology in microscopic study of CRME and the characteristic of strength development of CRME. The adhesion development of CRME begins with the process of demulsification and hydration caused by the migration and dissipation of water inside the emulsified asphalt mastic. In addition, many factors would influence this process simultaneously. However, the microbehavior mechanism of internal water transport in emulsified asphalt mortar has not yet been thoroughly revealed, and it lacked scientific measurement research on the promoting effect of complex conditions on the development of adhesive properties of mixtures. Therefore, in this paper, they were suggested for future research.\",\"PeriodicalId\":7242,\"journal\":{\"name\":\"Advances in Civil Engineering\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/7940655\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/7940655","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Microstructure in Adhesion Development Process and Strength Formation Mechanism in Early Stage of Cold Recycled Mixture with Emulsified Asphalt
With the large-scale maintenance and renovation of asphalt pavement, a considerable amount of reclaimed asphalt pavement (RAP) will be generated. Stacking these wastes occupies a large amount of land and seriously damages the ecological environment. Hence, efficient regeneration of RAP through recycling technology has gained more and more attention. In this paper, some topics were reviewed to further promote the cold recycling (CR) technology and better follow-up the research progress. First, it discussed the raw materials and the differences and similarities between cement-emulsified asphalt mortar (CEAM) and cold-recycled mixtures with emulsified asphalt (CRME). Second, it reviewed the adhesion development of emulsified asphalt mastic, the application of X-ray technology in microscopic study of CRME and the characteristic of strength development of CRME. The adhesion development of CRME begins with the process of demulsification and hydration caused by the migration and dissipation of water inside the emulsified asphalt mastic. In addition, many factors would influence this process simultaneously. However, the microbehavior mechanism of internal water transport in emulsified asphalt mortar has not yet been thoroughly revealed, and it lacked scientific measurement research on the promoting effect of complex conditions on the development of adhesive properties of mixtures. Therefore, in this paper, they were suggested for future research.
期刊介绍:
Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged.
Subject areas include (but are by no means limited to):
-Structural mechanics and engineering-
Structural design and construction management-
Structural analysis and computational mechanics-
Construction technology and implementation-
Construction materials design and engineering-
Highway and transport engineering-
Bridge and tunnel engineering-
Municipal and urban engineering-
Coastal, harbour and offshore engineering--
Geotechnical and earthquake engineering
Engineering for water, waste, energy, and environmental applications-
Hydraulic engineering and fluid mechanics-
Surveying, monitoring, and control systems in construction-
Health and safety in a civil engineering setting.
Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.