三维规则黑洞中的引力排斥效应

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS General Relativity and Gravitation Pub Date : 2024-02-01 DOI:10.1007/s10714-024-03207-x
Orlando Luongo, Hernando Quevedo, S. N. Sajadi
{"title":"三维规则黑洞中的引力排斥效应","authors":"Orlando Luongo, Hernando Quevedo, S. N. Sajadi","doi":"10.1007/s10714-024-03207-x","DOIUrl":null,"url":null,"abstract":"<p>In this work, we consider the effects of repulsive gravity in an invariant way for four static 3D regular black holes, using the eigenvalues of the Riemann curvature tensor, the Ricci scalar, and the strong energy conditions. The eigenvalues of the solutions are non-vanishing asymptotically (in asymptotically AdS) and increase as the source of gravity is approached, providing a radius at which the passage from attractive to repulsive gravity might occur. We compute the onsets and the regions of repulsive gravity and conclude that the regular behavior of the solutions at the origin of coordinates can be interpreted as due to the presence of repulsive gravity, which also turns out to be related with the violation of the strong energy condition. We showed that in all of the solutions for the allowed region of parameters, gravity changes its sign, but the repulsive regions only for the non-logarithmic solution are affected by the mass that generates the regular black hole. The repulsive regions for the logarithmic solutions are dependent on electric charge and the AdS<span>\\(_{3}\\)</span> length. The implications and physical consequences of these results are discussed in detail.</p>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitational repulsive effects in 3D regular black holes\",\"authors\":\"Orlando Luongo, Hernando Quevedo, S. N. Sajadi\",\"doi\":\"10.1007/s10714-024-03207-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we consider the effects of repulsive gravity in an invariant way for four static 3D regular black holes, using the eigenvalues of the Riemann curvature tensor, the Ricci scalar, and the strong energy conditions. The eigenvalues of the solutions are non-vanishing asymptotically (in asymptotically AdS) and increase as the source of gravity is approached, providing a radius at which the passage from attractive to repulsive gravity might occur. We compute the onsets and the regions of repulsive gravity and conclude that the regular behavior of the solutions at the origin of coordinates can be interpreted as due to the presence of repulsive gravity, which also turns out to be related with the violation of the strong energy condition. We showed that in all of the solutions for the allowed region of parameters, gravity changes its sign, but the repulsive regions only for the non-logarithmic solution are affected by the mass that generates the regular black hole. The repulsive regions for the logarithmic solutions are dependent on electric charge and the AdS<span>\\\\(_{3}\\\\)</span> length. The implications and physical consequences of these results are discussed in detail.</p>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s10714-024-03207-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10714-024-03207-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们利用黎曼曲率张量的特征值、利玛窦标量和强能量条件,以不变的方式考虑了四个静态三维正则黑洞的斥引力效应。解的特征值渐近地(在渐近 AdS 中)是非范数的,并且随着引力源的接近而增加,这就提供了一个可能发生从吸引力引力到排斥力引力的半径。我们计算了斥引力的起始点和区域,并得出结论:坐标原点处的解的规则行为可以解释为斥引力的存在,而斥引力的存在也与违反强能量条件有关。我们的研究表明,在参数允许区域内的所有解中,引力都会改变其符号,但只有非对数解的排斥区域会受到产生规则黑洞的质量的影响。对数解的排斥区域取决于电荷和 AdS\(_{3}\) 长度。我们将详细讨论这些结果的意义和物理后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gravitational repulsive effects in 3D regular black holes

In this work, we consider the effects of repulsive gravity in an invariant way for four static 3D regular black holes, using the eigenvalues of the Riemann curvature tensor, the Ricci scalar, and the strong energy conditions. The eigenvalues of the solutions are non-vanishing asymptotically (in asymptotically AdS) and increase as the source of gravity is approached, providing a radius at which the passage from attractive to repulsive gravity might occur. We compute the onsets and the regions of repulsive gravity and conclude that the regular behavior of the solutions at the origin of coordinates can be interpreted as due to the presence of repulsive gravity, which also turns out to be related with the violation of the strong energy condition. We showed that in all of the solutions for the allowed region of parameters, gravity changes its sign, but the repulsive regions only for the non-logarithmic solution are affected by the mass that generates the regular black hole. The repulsive regions for the logarithmic solutions are dependent on electric charge and the AdS\(_{3}\) length. The implications and physical consequences of these results are discussed in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
期刊最新文献
Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version Elementary considerations on gravitational waves from hyperbolic encounters Approximating photon trajectories in spherically symmetric spacetimes Exponential correction to Friedmann equations Some remarks on Bardeen-AdS black hole surrounded by a fluid of strings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1