{"title":"量子点对 SPR 检测 Rap1 交互因子 1 (Rif1) 和 G4 之间分子交互作用的改进的影响","authors":"Sana Alavi , Hamed Ghadiri , Bahareh Dabirmanesh , Khosro Khajeh","doi":"10.1016/j.sbsr.2024.100621","DOIUrl":null,"url":null,"abstract":"<div><p>The main shortcoming of the Surface Plasmon Resonance (SPR) method is its inability to detect low molecular weight (<400 Da) and dilute samples. Moreover, the study of protein-DNA interactions using SPR is one of the most challenging one. Due to these difficulties, the enhancement of SPR signals has been less explored. According to the proposition that the Rif1 protein can be considered a biomarker in breast cancer, further investigations are needed to understand the mechanism of Rif1 and G4 interaction. For this purpose, we studied different platforms to obtain kinetic data on their interaction and to investigate the increase in the SPR signal using quantum dot (Qdot) nanoparticles. Finally, the nickel-NTA chip was used to immobilize the protein, and the streptavidin was attached to Qdot through the EDC-NHS mechanism to bind the 5′-biotinylated G4 structure that was prepared. Different concentrations of biotinylated-G4 were injected, and the enhancement in the signals was studied by injecting the streptavidin-conjugated Qdots onto the chip. Our results indicate a very low dissociation constant of 6.8 ± 0.9 nM which is in consistent with our previous studies. We could enhance the signals by approximately 6 times which is believed to be due to the high bulk density and refractive index of Qdots.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"43 ","pages":"Article 100621"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000035/pdfft?md5=d5da2b17de6466b2f49b6f961a92a90c&pid=1-s2.0-S2214180424000035-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The impact of quantum dot on the SPR detection improvement of molecular interactions between Rap1 interacting factor1 (Rif1) and G4\",\"authors\":\"Sana Alavi , Hamed Ghadiri , Bahareh Dabirmanesh , Khosro Khajeh\",\"doi\":\"10.1016/j.sbsr.2024.100621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main shortcoming of the Surface Plasmon Resonance (SPR) method is its inability to detect low molecular weight (<400 Da) and dilute samples. Moreover, the study of protein-DNA interactions using SPR is one of the most challenging one. Due to these difficulties, the enhancement of SPR signals has been less explored. According to the proposition that the Rif1 protein can be considered a biomarker in breast cancer, further investigations are needed to understand the mechanism of Rif1 and G4 interaction. For this purpose, we studied different platforms to obtain kinetic data on their interaction and to investigate the increase in the SPR signal using quantum dot (Qdot) nanoparticles. Finally, the nickel-NTA chip was used to immobilize the protein, and the streptavidin was attached to Qdot through the EDC-NHS mechanism to bind the 5′-biotinylated G4 structure that was prepared. Different concentrations of biotinylated-G4 were injected, and the enhancement in the signals was studied by injecting the streptavidin-conjugated Qdots onto the chip. Our results indicate a very low dissociation constant of 6.8 ± 0.9 nM which is in consistent with our previous studies. We could enhance the signals by approximately 6 times which is believed to be due to the high bulk density and refractive index of Qdots.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"43 \",\"pages\":\"Article 100621\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000035/pdfft?md5=d5da2b17de6466b2f49b6f961a92a90c&pid=1-s2.0-S2214180424000035-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
The impact of quantum dot on the SPR detection improvement of molecular interactions between Rap1 interacting factor1 (Rif1) and G4
The main shortcoming of the Surface Plasmon Resonance (SPR) method is its inability to detect low molecular weight (<400 Da) and dilute samples. Moreover, the study of protein-DNA interactions using SPR is one of the most challenging one. Due to these difficulties, the enhancement of SPR signals has been less explored. According to the proposition that the Rif1 protein can be considered a biomarker in breast cancer, further investigations are needed to understand the mechanism of Rif1 and G4 interaction. For this purpose, we studied different platforms to obtain kinetic data on their interaction and to investigate the increase in the SPR signal using quantum dot (Qdot) nanoparticles. Finally, the nickel-NTA chip was used to immobilize the protein, and the streptavidin was attached to Qdot through the EDC-NHS mechanism to bind the 5′-biotinylated G4 structure that was prepared. Different concentrations of biotinylated-G4 were injected, and the enhancement in the signals was studied by injecting the streptavidin-conjugated Qdots onto the chip. Our results indicate a very low dissociation constant of 6.8 ± 0.9 nM which is in consistent with our previous studies. We could enhance the signals by approximately 6 times which is believed to be due to the high bulk density and refractive index of Qdots.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.