{"title":"基于形态空间模式分析和最小累积阻力模型的海河流域生态网络构建与优化","authors":"Fawen Li, Yuyao Zhao, Yong Zhao","doi":"10.1002/eco.2620","DOIUrl":null,"url":null,"abstract":"<p>In recent years, landscape fragmentation has become increasingly serious due to the impact of human activities. The ecological network can ensure the ecological function of the region through linearly connecting ecological corridors and effectively solving the problem of landscape fragmentation that occurs in the evolution of landscape patterns. Based on MSPA and MCR models, the article analyses the distribution and changes of landscape types in the Haihe River basin and constructs an ecological network in the study area by combining the local ecological characteristics of the basin. The network structure is optimized in the end by selecting three large stepping stones, constructing 69 internal ecological stepping stones, identifying 212 fracture points, and adding seven ecological corridors to build a point–line surface network structure with an internal and external double-loop structure. The connectivity of the network structure is evaluated by using complex network method. It is calculated that the network connectivity performance is improved by 13.95% after optimization, which means the species exchange in the study area is closer.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and optimization of ecological network based on morphological spatial pattern analysis and minimum cumulative resistance models in Haihe River basin\",\"authors\":\"Fawen Li, Yuyao Zhao, Yong Zhao\",\"doi\":\"10.1002/eco.2620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, landscape fragmentation has become increasingly serious due to the impact of human activities. The ecological network can ensure the ecological function of the region through linearly connecting ecological corridors and effectively solving the problem of landscape fragmentation that occurs in the evolution of landscape patterns. Based on MSPA and MCR models, the article analyses the distribution and changes of landscape types in the Haihe River basin and constructs an ecological network in the study area by combining the local ecological characteristics of the basin. The network structure is optimized in the end by selecting three large stepping stones, constructing 69 internal ecological stepping stones, identifying 212 fracture points, and adding seven ecological corridors to build a point–line surface network structure with an internal and external double-loop structure. The connectivity of the network structure is evaluated by using complex network method. It is calculated that the network connectivity performance is improved by 13.95% after optimization, which means the species exchange in the study area is closer.</p>\",\"PeriodicalId\":55169,\"journal\":{\"name\":\"Ecohydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eco.2620\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2620","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Construction and optimization of ecological network based on morphological spatial pattern analysis and minimum cumulative resistance models in Haihe River basin
In recent years, landscape fragmentation has become increasingly serious due to the impact of human activities. The ecological network can ensure the ecological function of the region through linearly connecting ecological corridors and effectively solving the problem of landscape fragmentation that occurs in the evolution of landscape patterns. Based on MSPA and MCR models, the article analyses the distribution and changes of landscape types in the Haihe River basin and constructs an ecological network in the study area by combining the local ecological characteristics of the basin. The network structure is optimized in the end by selecting three large stepping stones, constructing 69 internal ecological stepping stones, identifying 212 fracture points, and adding seven ecological corridors to build a point–line surface network structure with an internal and external double-loop structure. The connectivity of the network structure is evaluated by using complex network method. It is calculated that the network connectivity performance is improved by 13.95% after optimization, which means the species exchange in the study area is closer.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.