风险分层不足是否会稀释随机临床试验中的危险比估计值?

IF 2.2 3区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Clinical Trials Pub Date : 2024-10-01 Epub Date: 2024-02-02 DOI:10.1177/17407745231222448
Devan V Mehrotra, Rachel Marceau West
{"title":"风险分层不足是否会稀释随机临床试验中的危险比估计值?","authors":"Devan V Mehrotra, Rachel Marceau West","doi":"10.1177/17407745231222448","DOIUrl":null,"url":null,"abstract":"<p><p>In randomized clinical trials, analyses of time-to-event data without risk stratification, or with stratification based on pre-selected factors revealed at the end of the trial to be at most weakly associated with risk, are quite common. We caution that such analyses are likely delivering hazard ratio estimates that unwittingly dilute the evidence of benefit for the test relative to the control treatment. To make our case, first, we use a hypothetical scenario to contrast risk-unstratified and risk-stratified hazard ratios. Thereafter, we draw attention to the previously published 5-step stratified testing and amalgamation routine (5-STAR) approach in which a pre-specified treatment-blinded algorithm is applied to survival times from the trial to partition patients into well-separated risk strata using baseline covariates determined to be jointly strongly prognostic for event risk. After treatment unblinding, a treatment comparison is done within each risk stratum and stratum-level results are averaged for overall inference. For illustration, we use 5-STAR to reanalyze data for the primary and key secondary time-to-event endpoints from three published cardiovascular outcomes trials. The results show that the 5-STAR estimate is typically smaller (i.e. more in favor of the test treatment) than the originally reported (traditional) estimate. This is not surprising because 5-STAR mitigates the presumed dilution bias in the traditional hazard ratio estimate caused by no or inadequate risk stratification, as evidenced by two detailed examples. Pre-selection of stratification factors at the trial design stage to achieve adequate risk stratification for the analysis will often be challenging. In such settings, an objective risk stratification approach such as 5-STAR, which is partly aligned with guidance from the US Food and Drug Administration on covariate-adjustment in clinical trials, is worthy of consideration.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"571-575"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is inadequate risk stratification diluting hazard ratio estimates in randomized clinical trials?\",\"authors\":\"Devan V Mehrotra, Rachel Marceau West\",\"doi\":\"10.1177/17407745231222448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In randomized clinical trials, analyses of time-to-event data without risk stratification, or with stratification based on pre-selected factors revealed at the end of the trial to be at most weakly associated with risk, are quite common. We caution that such analyses are likely delivering hazard ratio estimates that unwittingly dilute the evidence of benefit for the test relative to the control treatment. To make our case, first, we use a hypothetical scenario to contrast risk-unstratified and risk-stratified hazard ratios. Thereafter, we draw attention to the previously published 5-step stratified testing and amalgamation routine (5-STAR) approach in which a pre-specified treatment-blinded algorithm is applied to survival times from the trial to partition patients into well-separated risk strata using baseline covariates determined to be jointly strongly prognostic for event risk. After treatment unblinding, a treatment comparison is done within each risk stratum and stratum-level results are averaged for overall inference. For illustration, we use 5-STAR to reanalyze data for the primary and key secondary time-to-event endpoints from three published cardiovascular outcomes trials. The results show that the 5-STAR estimate is typically smaller (i.e. more in favor of the test treatment) than the originally reported (traditional) estimate. This is not surprising because 5-STAR mitigates the presumed dilution bias in the traditional hazard ratio estimate caused by no or inadequate risk stratification, as evidenced by two detailed examples. Pre-selection of stratification factors at the trial design stage to achieve adequate risk stratification for the analysis will often be challenging. In such settings, an objective risk stratification approach such as 5-STAR, which is partly aligned with guidance from the US Food and Drug Administration on covariate-adjustment in clinical trials, is worthy of consideration.</p>\",\"PeriodicalId\":10685,\"journal\":{\"name\":\"Clinical Trials\",\"volume\":\" \",\"pages\":\"571-575\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Trials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17407745231222448\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Trials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17407745231222448","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在随机临床试验中,对时间到事件数据进行分析而不进行风险分层,或根据试验结束时发现与风险最多只存在微弱关联的预选因素进行分层的做法非常普遍。我们要提醒的是,这种分析很可能会提供危险比估计值,无意中稀释了试验相对于对照治疗的获益证据。为了说明我们的观点,首先,我们用一个假设情景来对比风险未分层和风险分层的危险比。随后,我们提请大家注意之前发表的五步分层检验和合并常规(5-STAR)方法,该方法将预先指定的治疗盲法应用于试验的生存时间,利用被确定为对事件风险有共同强预后作用的基线协变量将患者划分为风险分层。治疗解除绑定后,在每个风险分层内进行治疗比较,并对分层结果取平均值进行总体推断。为了说明问题,我们使用 5-STAR 重新分析了三项已发表的心血管结局试验的主要和关键次要时间-事件终点数据。结果显示,5-STAR 估计值通常比最初报告的(传统)估计值要小(即更有利于 5-STAR 试验治疗)。这并不奇怪,因为 5-STAR 可减轻传统危险比估计值中因未进行风险分层或风险分层不充分而导致的假定稀释偏差,两个详细的例子就证明了这一点。在试验设计阶段预先选择分层因素,为分析实现充分的风险分层往往具有挑战性。在这种情况下,5-STAR 等客观风险分层方法值得考虑,该方法部分符合美国食品药品管理局关于临床试验中协变量调整的指导意见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Is inadequate risk stratification diluting hazard ratio estimates in randomized clinical trials?

In randomized clinical trials, analyses of time-to-event data without risk stratification, or with stratification based on pre-selected factors revealed at the end of the trial to be at most weakly associated with risk, are quite common. We caution that such analyses are likely delivering hazard ratio estimates that unwittingly dilute the evidence of benefit for the test relative to the control treatment. To make our case, first, we use a hypothetical scenario to contrast risk-unstratified and risk-stratified hazard ratios. Thereafter, we draw attention to the previously published 5-step stratified testing and amalgamation routine (5-STAR) approach in which a pre-specified treatment-blinded algorithm is applied to survival times from the trial to partition patients into well-separated risk strata using baseline covariates determined to be jointly strongly prognostic for event risk. After treatment unblinding, a treatment comparison is done within each risk stratum and stratum-level results are averaged for overall inference. For illustration, we use 5-STAR to reanalyze data for the primary and key secondary time-to-event endpoints from three published cardiovascular outcomes trials. The results show that the 5-STAR estimate is typically smaller (i.e. more in favor of the test treatment) than the originally reported (traditional) estimate. This is not surprising because 5-STAR mitigates the presumed dilution bias in the traditional hazard ratio estimate caused by no or inadequate risk stratification, as evidenced by two detailed examples. Pre-selection of stratification factors at the trial design stage to achieve adequate risk stratification for the analysis will often be challenging. In such settings, an objective risk stratification approach such as 5-STAR, which is partly aligned with guidance from the US Food and Drug Administration on covariate-adjustment in clinical trials, is worthy of consideration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Trials
Clinical Trials 医学-医学:研究与实验
CiteScore
4.10
自引率
3.70%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Clinical Trials is dedicated to advancing knowledge on the design and conduct of clinical trials related research methodologies. Covering the design, conduct, analysis, synthesis and evaluation of key methodologies, the journal remains on the cusp of the latest topics, including ethics, regulation and policy impact.
期刊最新文献
Challenges in conducting efficacy trials for new COVID-19 vaccines in developed countries. Society for Clinical Trials Data Monitoring Committee initiative website: Closing the gap. A comparison of computational algorithms for the Bayesian analysis of clinical trials. Comparison of Bayesian and frequentist monitoring boundaries motivated by the Multiplatform Randomized Clinical Trial. Efficient designs for three-sequence stepped wedge trials with continuous recruitment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1