敲除腺苷琥珀酸合成酶 purA 会增加大肠杆菌对可乐定的敏感性。

IF 2.2 4区 生物学 Q3 MICROBIOLOGY Fems Microbiology Letters Pub Date : 2024-01-09 DOI:10.1093/femsle/fnae007
Tomonori Kano, Kazuya Ishikawa, Kazuyuki Furuta, Chikara Kaito
{"title":"敲除腺苷琥珀酸合成酶 purA 会增加大肠杆菌对可乐定的敏感性。","authors":"Tomonori Kano, Kazuya Ishikawa, Kazuyuki Furuta, Chikara Kaito","doi":"10.1093/femsle/fnae007","DOIUrl":null,"url":null,"abstract":"<p><p>Colistin is a cationic cyclic antimicrobial peptide used as a last resort against multidrug-resistant gram-negative bacteria. To understand the factors involved in colistin susceptibility, we screened colistin-sensitive mutants from an E. coli gene-knockout library (Keio collection). The knockout of purA, whose product catalyzes the synthesis of adenylosuccinate from IMP in the de novo purine synthesis pathway, resulted in increased sensitivity to colistin. Adenylosuccinate is subsequently converted to AMP, which is phosphorylated to produce ADP, a substrate for ATP synthesis. The amount of ATP was lower in the purA-knockout mutant than that in the wild-type strain. ATP synthesis is coupled with proton transfer, and it contributes to the membrane potential. Using the membrane potential probe, 3,3'-diethyloxacarbocyanine iodide [DiOC2(3)], we found that the membrane was hyperpolarized in the purA-knockout mutant compared to that in the wild-type strain. Treatment with the proton uncoupler, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), abolished the hyperpolarization and colistin sensitivity in the mutant. The purA-knockout mutant exhibited increased sensitivity to aminoglycosides, kanamycin, and gentamicin; their uptake requires a membrane potential. Therefore, the knockout of purA, an adenylosuccinate synthase, decreases ATP synthesis concurrently with membrane hyperpolarization, resulting in increased sensitivity to colistin.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876104/pdf/","citationCount":"0","resultStr":"{\"title\":\"Knockout of adenylosuccinate synthase purA increases susceptibility to colistin in Escherichia coli.\",\"authors\":\"Tomonori Kano, Kazuya Ishikawa, Kazuyuki Furuta, Chikara Kaito\",\"doi\":\"10.1093/femsle/fnae007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colistin is a cationic cyclic antimicrobial peptide used as a last resort against multidrug-resistant gram-negative bacteria. To understand the factors involved in colistin susceptibility, we screened colistin-sensitive mutants from an E. coli gene-knockout library (Keio collection). The knockout of purA, whose product catalyzes the synthesis of adenylosuccinate from IMP in the de novo purine synthesis pathway, resulted in increased sensitivity to colistin. Adenylosuccinate is subsequently converted to AMP, which is phosphorylated to produce ADP, a substrate for ATP synthesis. The amount of ATP was lower in the purA-knockout mutant than that in the wild-type strain. ATP synthesis is coupled with proton transfer, and it contributes to the membrane potential. Using the membrane potential probe, 3,3'-diethyloxacarbocyanine iodide [DiOC2(3)], we found that the membrane was hyperpolarized in the purA-knockout mutant compared to that in the wild-type strain. Treatment with the proton uncoupler, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), abolished the hyperpolarization and colistin sensitivity in the mutant. The purA-knockout mutant exhibited increased sensitivity to aminoglycosides, kanamycin, and gentamicin; their uptake requires a membrane potential. Therefore, the knockout of purA, an adenylosuccinate synthase, decreases ATP synthesis concurrently with membrane hyperpolarization, resulting in increased sensitivity to colistin.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnae007\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

秋水仙素是一种阳离子环状抗菌肽,是对付耐多药革兰氏阴性菌的最后手段。为了了解对可乐定敏感的相关因素,我们从大肠杆菌基因敲除文库(庆应义塾文库)中筛选出了对可乐定敏感的突变体。purA(其产物在嘌呤从头合成途径中催化 IMP 与腺苷琥珀酸的合成)的基因敲除导致对可乐定的敏感性增加。腺苷琥珀酸盐随后转化为 AMP,AMP 被磷酸化后产生 ADP,ADP 是 ATP 合成的底物。在 purA 基因敲除突变体中,ATP 的含量低于野生型菌株。ATP 的合成与质子转移有关,它对膜电位有贡献。利用膜电位探针 3,3'-二乙基氧杂羰花青碘化物[DiOC2(3)],我们发现与野生型菌株相比,purA 基因敲除突变体的膜极化程度过高。质子解偶联剂羰基氰化间氯苯腙(CCCP)可消除突变体的超极化和对可乐定的敏感性。purA 基因敲除突变体对氨基糖苷类、卡那霉素和庆大霉素的敏感性增加;它们的吸收需要膜电位。因此,腺苷琥珀酸合成酶 purA 的基因敲除会在膜超极化的同时减少 ATP 合成,从而增加对秋水仙素的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knockout of adenylosuccinate synthase purA increases susceptibility to colistin in Escherichia coli.

Colistin is a cationic cyclic antimicrobial peptide used as a last resort against multidrug-resistant gram-negative bacteria. To understand the factors involved in colistin susceptibility, we screened colistin-sensitive mutants from an E. coli gene-knockout library (Keio collection). The knockout of purA, whose product catalyzes the synthesis of adenylosuccinate from IMP in the de novo purine synthesis pathway, resulted in increased sensitivity to colistin. Adenylosuccinate is subsequently converted to AMP, which is phosphorylated to produce ADP, a substrate for ATP synthesis. The amount of ATP was lower in the purA-knockout mutant than that in the wild-type strain. ATP synthesis is coupled with proton transfer, and it contributes to the membrane potential. Using the membrane potential probe, 3,3'-diethyloxacarbocyanine iodide [DiOC2(3)], we found that the membrane was hyperpolarized in the purA-knockout mutant compared to that in the wild-type strain. Treatment with the proton uncoupler, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), abolished the hyperpolarization and colistin sensitivity in the mutant. The purA-knockout mutant exhibited increased sensitivity to aminoglycosides, kanamycin, and gentamicin; their uptake requires a membrane potential. Therefore, the knockout of purA, an adenylosuccinate synthase, decreases ATP synthesis concurrently with membrane hyperpolarization, resulting in increased sensitivity to colistin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
期刊最新文献
Disruption of the pkac2 gene in Pleurotus ostreatus alters cell wall structures and enables mycelial dispersion in liquid culture. Temporal control of Staphylococcus aureus intracellular pH by sodium and potassium. DIVULSUPERBAC: an outreach project to raise awareness of antimicrobial resistance. Genome-based analysis of biosynthetic potential from antimycotic Streptomyces rochei strain A144. Menaquinone production in genetically engineered E. coli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1