{"title":"利用机器学习开发和验证胶质瘤分级临床预测模型。","authors":"Mingzhen Wu, Jixin Luan, Di Zhang, Hua Fan, Lishan Qiao, Chuanchen Zhang","doi":"10.3233/THC-231645","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Histopathological evaluation is currently the gold standard for grading gliomas; however, this technique is invasive.</p><p><strong>Objective: </strong>This study aimed to develop and validate a diagnostic prediction model for glioma by employing multiple machine learning algorithms to identify risk factors associated with high-grade glioma, facilitating the prediction of glioma grading.</p><p><strong>Methods: </strong>Data from 1114 eligible glioma patients were obtained from The Cancer Genome Atlas (TCGA) database, which was divided into a training set (n= 781) and a test set (n= 333). Fifty machine learning algorithms were employed, and the optimal algorithm was selected to construct a prediction model. The performance of the machine learning prediction model was compared to the clinical prediction model in terms of discrimination, calibration, and clinical validity to assess the performance of the prediction model.</p><p><strong>Results: </strong>The area under the curve (AUC) values of the machine learning prediction models (training set: 0.870 vs. 0.740, test set: 0.863 vs. 0.718) were significantly improved from the clinical prediction models. Furthermore, significant improvement in discrimination was observed for the Integrated Discrimination Improvement (IDI) (training set: 0.230, test set: 0.270) and Net Reclassification Index (NRI) (training set: 0.170, test set: 0.170) from the clinical prognostic model. Both models showed a high goodness of fit and an increased net benefit.</p><p><strong>Conclusion: </strong>A strong prediction accuracy model can be developed using machine learning algorithms to screen for high-grade glioma risk predictors, which can serve as a non-invasive prediction tool for preoperative diagnostic grading of glioma.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"1977-1990"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a clinical prediction model for glioma grade using machine learning.\",\"authors\":\"Mingzhen Wu, Jixin Luan, Di Zhang, Hua Fan, Lishan Qiao, Chuanchen Zhang\",\"doi\":\"10.3233/THC-231645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Histopathological evaluation is currently the gold standard for grading gliomas; however, this technique is invasive.</p><p><strong>Objective: </strong>This study aimed to develop and validate a diagnostic prediction model for glioma by employing multiple machine learning algorithms to identify risk factors associated with high-grade glioma, facilitating the prediction of glioma grading.</p><p><strong>Methods: </strong>Data from 1114 eligible glioma patients were obtained from The Cancer Genome Atlas (TCGA) database, which was divided into a training set (n= 781) and a test set (n= 333). Fifty machine learning algorithms were employed, and the optimal algorithm was selected to construct a prediction model. The performance of the machine learning prediction model was compared to the clinical prediction model in terms of discrimination, calibration, and clinical validity to assess the performance of the prediction model.</p><p><strong>Results: </strong>The area under the curve (AUC) values of the machine learning prediction models (training set: 0.870 vs. 0.740, test set: 0.863 vs. 0.718) were significantly improved from the clinical prediction models. Furthermore, significant improvement in discrimination was observed for the Integrated Discrimination Improvement (IDI) (training set: 0.230, test set: 0.270) and Net Reclassification Index (NRI) (training set: 0.170, test set: 0.170) from the clinical prognostic model. Both models showed a high goodness of fit and an increased net benefit.</p><p><strong>Conclusion: </strong>A strong prediction accuracy model can be developed using machine learning algorithms to screen for high-grade glioma risk predictors, which can serve as a non-invasive prediction tool for preoperative diagnostic grading of glioma.</p>\",\"PeriodicalId\":48978,\"journal\":{\"name\":\"Technology and Health Care\",\"volume\":\" \",\"pages\":\"1977-1990\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology and Health Care\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/THC-231645\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-231645","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
背景:组织病理学评估是目前胶质瘤分级的金标准;然而,这种技术具有侵入性:本研究旨在开发和验证胶质瘤诊断预测模型,通过采用多种机器学习算法来识别与高级别胶质瘤相关的风险因素,从而促进胶质瘤分级的预测:从癌症基因组图谱(TCGA)数据库中获取了1114名符合条件的胶质瘤患者的数据,并将其分为训练集(n= 781)和测试集(n= 333)。实验采用了 50 种机器学习算法,并选择最优算法构建预测模型。将机器学习预测模型的性能与临床预测模型的区分度、校准和临床有效性进行比较,以评估预测模型的性能:结果:与临床预测模型相比,机器学习预测模型的曲线下面积(AUC)值(训练集:0.870 vs. 0.740,测试集:0.863 vs. 0.718)显著提高。此外,与临床预后模型相比,综合判别改进指数(IDI)(训练集:0.230,测试集:0.270)和净重新分类指数(NRI)(训练集:0.170,测试集:0.170)的判别能力也有明显提高。这两个模型都显示出较高的拟合度和较高的净收益:结论:利用机器学习算法可以开发出一种预测准确性很高的模型,用于筛选高级别胶质瘤风险预测因子,可作为胶质瘤术前诊断分级的无创预测工具。
Development and validation of a clinical prediction model for glioma grade using machine learning.
Background: Histopathological evaluation is currently the gold standard for grading gliomas; however, this technique is invasive.
Objective: This study aimed to develop and validate a diagnostic prediction model for glioma by employing multiple machine learning algorithms to identify risk factors associated with high-grade glioma, facilitating the prediction of glioma grading.
Methods: Data from 1114 eligible glioma patients were obtained from The Cancer Genome Atlas (TCGA) database, which was divided into a training set (n= 781) and a test set (n= 333). Fifty machine learning algorithms were employed, and the optimal algorithm was selected to construct a prediction model. The performance of the machine learning prediction model was compared to the clinical prediction model in terms of discrimination, calibration, and clinical validity to assess the performance of the prediction model.
Results: The area under the curve (AUC) values of the machine learning prediction models (training set: 0.870 vs. 0.740, test set: 0.863 vs. 0.718) were significantly improved from the clinical prediction models. Furthermore, significant improvement in discrimination was observed for the Integrated Discrimination Improvement (IDI) (training set: 0.230, test set: 0.270) and Net Reclassification Index (NRI) (training set: 0.170, test set: 0.170) from the clinical prognostic model. Both models showed a high goodness of fit and an increased net benefit.
Conclusion: A strong prediction accuracy model can be developed using machine learning algorithms to screen for high-grade glioma risk predictors, which can serve as a non-invasive prediction tool for preoperative diagnostic grading of glioma.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).