Ahasan Habib , Rokeya Sarah , Slesha Tuladhar , Bashir Khoda , Shah M. Limon
{"title":"用组分重量和剪切率调节生物墨水的流变特性,提高生物打印支架的保真度","authors":"Ahasan Habib , Rokeya Sarah , Slesha Tuladhar , Bashir Khoda , Shah M. Limon","doi":"10.1016/j.bprint.2024.e00332","DOIUrl":null,"url":null,"abstract":"<div><p><span>The study focuses on the formulation of a hybrid hydrogel comprising alginate<span>, carboxymethyl cellulose<span><span> (CMC), and TEMPO-oxidized nano-fibrillated cellulose (TO-NFC) for bioprinting precise scaffold for tissue engineering applications. Even though controlling the capacity of porosity during </span>scaffold fabrication<span><span> can positively assist the encapsulated cell growth, the lack of the right material choice and percentage may make it difficult to 3D bioprint scaffold conforming user user-defined porosity, shape fidelity, and </span>cell viability. In our earlier work, we have demonstrated that hybrid-hydrogel made of alginate, CMC, and TO-NFC has shown promising characteristics of bio-ink for tissue scaffold applications [1]. Carefully controlled material composition can help generate the required shear rate in the nozzle to flow the composition smoothly, confirming proper filament width and eventually, defined scaffold porosity. However, achieving the desired rheological property from the composition is an exhaustive process with a series of experiments. Due to their complex behavior after mixing, a predictive viscosity model is necessary. To address that challenge, we propose a multiple linear regression-based model with an adjusted-R</span></span></span></span><sup>2</sup><span> value of 89 % to estimate the viscosity of composition with respect to the weight percentage of alginate, CMC, TO-NFC, and various shear rates. There are 23 unique compositions prepared with various weight percent of Alginate, CMC, and TO-NFC, a comprehensive set of 483 viscosity measurements was obtained. These measurements were collected at 21 distinct shear rate levels, ranging from 0.1 to 100 s</span><sup>−1</sup><span><span>. We observed while the same solid content can result in a wide range of viscosity by systematically varying the percentage of Alginate, CMC, TO-NFC, and shear rate, similar viscosity levels can also be attained across a range of compositions prepared with varying solid contents of them. After a 10-day incubation period, we assessed the morphology and viability of Porc1 cells encapsulated in one of the 23 compositions, revealing a significantly higher percentage of viability at 89 %. This fine-tuning of rheological properties by varying percentages and shear rates enhances the accuracy and fidelity of the </span>printed scaffold, ensuring a realistic representation of the desired scaffold architecture. Such a predictive model can help prepare bio-ink with relative ease and a smaller number of experiments which can help expedite the development of new bio-ink for bio-printing applications.</span></p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"38 ","pages":"Article e00332"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating rheological characteristics of bio-ink with component weight and shear rate for enhanced bioprinted scaffold fidelity\",\"authors\":\"Ahasan Habib , Rokeya Sarah , Slesha Tuladhar , Bashir Khoda , Shah M. Limon\",\"doi\":\"10.1016/j.bprint.2024.e00332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The study focuses on the formulation of a hybrid hydrogel comprising alginate<span>, carboxymethyl cellulose<span><span> (CMC), and TEMPO-oxidized nano-fibrillated cellulose (TO-NFC) for bioprinting precise scaffold for tissue engineering applications. Even though controlling the capacity of porosity during </span>scaffold fabrication<span><span> can positively assist the encapsulated cell growth, the lack of the right material choice and percentage may make it difficult to 3D bioprint scaffold conforming user user-defined porosity, shape fidelity, and </span>cell viability. In our earlier work, we have demonstrated that hybrid-hydrogel made of alginate, CMC, and TO-NFC has shown promising characteristics of bio-ink for tissue scaffold applications [1]. Carefully controlled material composition can help generate the required shear rate in the nozzle to flow the composition smoothly, confirming proper filament width and eventually, defined scaffold porosity. However, achieving the desired rheological property from the composition is an exhaustive process with a series of experiments. Due to their complex behavior after mixing, a predictive viscosity model is necessary. To address that challenge, we propose a multiple linear regression-based model with an adjusted-R</span></span></span></span><sup>2</sup><span> value of 89 % to estimate the viscosity of composition with respect to the weight percentage of alginate, CMC, TO-NFC, and various shear rates. There are 23 unique compositions prepared with various weight percent of Alginate, CMC, and TO-NFC, a comprehensive set of 483 viscosity measurements was obtained. These measurements were collected at 21 distinct shear rate levels, ranging from 0.1 to 100 s</span><sup>−1</sup><span><span>. We observed while the same solid content can result in a wide range of viscosity by systematically varying the percentage of Alginate, CMC, TO-NFC, and shear rate, similar viscosity levels can also be attained across a range of compositions prepared with varying solid contents of them. After a 10-day incubation period, we assessed the morphology and viability of Porc1 cells encapsulated in one of the 23 compositions, revealing a significantly higher percentage of viability at 89 %. This fine-tuning of rheological properties by varying percentages and shear rates enhances the accuracy and fidelity of the </span>printed scaffold, ensuring a realistic representation of the desired scaffold architecture. Such a predictive model can help prepare bio-ink with relative ease and a smaller number of experiments which can help expedite the development of new bio-ink for bio-printing applications.</span></p></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":\"38 \",\"pages\":\"Article e00332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886624000046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Modulating rheological characteristics of bio-ink with component weight and shear rate for enhanced bioprinted scaffold fidelity
The study focuses on the formulation of a hybrid hydrogel comprising alginate, carboxymethyl cellulose (CMC), and TEMPO-oxidized nano-fibrillated cellulose (TO-NFC) for bioprinting precise scaffold for tissue engineering applications. Even though controlling the capacity of porosity during scaffold fabrication can positively assist the encapsulated cell growth, the lack of the right material choice and percentage may make it difficult to 3D bioprint scaffold conforming user user-defined porosity, shape fidelity, and cell viability. In our earlier work, we have demonstrated that hybrid-hydrogel made of alginate, CMC, and TO-NFC has shown promising characteristics of bio-ink for tissue scaffold applications [1]. Carefully controlled material composition can help generate the required shear rate in the nozzle to flow the composition smoothly, confirming proper filament width and eventually, defined scaffold porosity. However, achieving the desired rheological property from the composition is an exhaustive process with a series of experiments. Due to their complex behavior after mixing, a predictive viscosity model is necessary. To address that challenge, we propose a multiple linear regression-based model with an adjusted-R2 value of 89 % to estimate the viscosity of composition with respect to the weight percentage of alginate, CMC, TO-NFC, and various shear rates. There are 23 unique compositions prepared with various weight percent of Alginate, CMC, and TO-NFC, a comprehensive set of 483 viscosity measurements was obtained. These measurements were collected at 21 distinct shear rate levels, ranging from 0.1 to 100 s−1. We observed while the same solid content can result in a wide range of viscosity by systematically varying the percentage of Alginate, CMC, TO-NFC, and shear rate, similar viscosity levels can also be attained across a range of compositions prepared with varying solid contents of them. After a 10-day incubation period, we assessed the morphology and viability of Porc1 cells encapsulated in one of the 23 compositions, revealing a significantly higher percentage of viability at 89 %. This fine-tuning of rheological properties by varying percentages and shear rates enhances the accuracy and fidelity of the printed scaffold, ensuring a realistic representation of the desired scaffold architecture. Such a predictive model can help prepare bio-ink with relative ease and a smaller number of experiments which can help expedite the development of new bio-ink for bio-printing applications.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.