{"title":"供应链管理中使用交叉堆场的卡车调度问题的多目标优化模型:NSGA-II 和 NRGA","authors":"Ahsan Haghgoei, Alireza Irajpour, Nasser Hamidi","doi":"10.1108/jm2-06-2023-0130","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to develop a multi-objective problem for scheduling the operations of trucks entering and exiting cross-docks where the number of unloaded or loaded products by trucks is fuzzy logistic. The first objective function minimizes the maximum time to receive the products. The second objective function minimizes the emission cost of trucks. Finally, the third objective function minimizes the number of trucks assigned to the entrance and exit doors.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Two steps are implemented to validate and modify the proposed model. In the first step, two random numerical examples in small dimensions were solved by GAMS software with min-max objective function as well as genetic algorithms (GA) and particle swarm optimization. In the second step, due to the increasing dimensions of the problem and computational complexity, the problem in question is part of the NP-Hard problem, and therefore multi-objective meta-heuristic algorithms are used along with validation and parameter adjustment.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Therefore, non-dominated sorting genetic algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA) are used to solve 30 random problems in high dimensions. Then, the algorithms were ranked using the TOPSIS method for each problem according to the results obtained from the evaluation criteria. The analysis of the results confirms the applicability of the proposed model and solution methods.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This paper proposes mathematical model of truck scheduling for a real problem, including cross-docks that play an essential role in supply chains, as they could reduce order delivery time, inventory holding costs and shipping costs. To solve the proposed multi-objective mathematical model, as the problem is NP-hard, multi-objective meta-heuristic algorithms are used along with validation and parameter adjustment. Therefore, NSGA-II and NRGA are used to solve 30 random problems in high dimensions.</p><!--/ Abstract__block -->","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":"6 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-objective optimization model of truck scheduling problem using cross-dock in supply chain management: NSGA-II and NRGA\",\"authors\":\"Ahsan Haghgoei, Alireza Irajpour, Nasser Hamidi\",\"doi\":\"10.1108/jm2-06-2023-0130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper aims to develop a multi-objective problem for scheduling the operations of trucks entering and exiting cross-docks where the number of unloaded or loaded products by trucks is fuzzy logistic. The first objective function minimizes the maximum time to receive the products. The second objective function minimizes the emission cost of trucks. Finally, the third objective function minimizes the number of trucks assigned to the entrance and exit doors.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Two steps are implemented to validate and modify the proposed model. In the first step, two random numerical examples in small dimensions were solved by GAMS software with min-max objective function as well as genetic algorithms (GA) and particle swarm optimization. In the second step, due to the increasing dimensions of the problem and computational complexity, the problem in question is part of the NP-Hard problem, and therefore multi-objective meta-heuristic algorithms are used along with validation and parameter adjustment.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>Therefore, non-dominated sorting genetic algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA) are used to solve 30 random problems in high dimensions. Then, the algorithms were ranked using the TOPSIS method for each problem according to the results obtained from the evaluation criteria. The analysis of the results confirms the applicability of the proposed model and solution methods.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This paper proposes mathematical model of truck scheduling for a real problem, including cross-docks that play an essential role in supply chains, as they could reduce order delivery time, inventory holding costs and shipping costs. To solve the proposed multi-objective mathematical model, as the problem is NP-hard, multi-objective meta-heuristic algorithms are used along with validation and parameter adjustment. Therefore, NSGA-II and NRGA are used to solve 30 random problems in high dimensions.</p><!--/ Abstract__block -->\",\"PeriodicalId\":16349,\"journal\":{\"name\":\"Journal of Modelling in Management\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modelling in Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jm2-06-2023-0130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-06-2023-0130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
A multi-objective optimization model of truck scheduling problem using cross-dock in supply chain management: NSGA-II and NRGA
Purpose
This paper aims to develop a multi-objective problem for scheduling the operations of trucks entering and exiting cross-docks where the number of unloaded or loaded products by trucks is fuzzy logistic. The first objective function minimizes the maximum time to receive the products. The second objective function minimizes the emission cost of trucks. Finally, the third objective function minimizes the number of trucks assigned to the entrance and exit doors.
Design/methodology/approach
Two steps are implemented to validate and modify the proposed model. In the first step, two random numerical examples in small dimensions were solved by GAMS software with min-max objective function as well as genetic algorithms (GA) and particle swarm optimization. In the second step, due to the increasing dimensions of the problem and computational complexity, the problem in question is part of the NP-Hard problem, and therefore multi-objective meta-heuristic algorithms are used along with validation and parameter adjustment.
Findings
Therefore, non-dominated sorting genetic algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA) are used to solve 30 random problems in high dimensions. Then, the algorithms were ranked using the TOPSIS method for each problem according to the results obtained from the evaluation criteria. The analysis of the results confirms the applicability of the proposed model and solution methods.
Originality/value
This paper proposes mathematical model of truck scheduling for a real problem, including cross-docks that play an essential role in supply chains, as they could reduce order delivery time, inventory holding costs and shipping costs. To solve the proposed multi-objective mathematical model, as the problem is NP-hard, multi-objective meta-heuristic algorithms are used along with validation and parameter adjustment. Therefore, NSGA-II and NRGA are used to solve 30 random problems in high dimensions.
期刊介绍:
Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.