亚微米硅阳极上氢键相互作用衍生的均质石墨烯涂层

Liewu Li, Yizhao Yang, Zhencheng Huang, Tao Huang, Weibin Chen, Xiaoyu Gong, Shenghua Ye, Hao Li, Shaoluan Huang, Wei Xiong, Jing Chen, Hongbin Wang, Xiangzhong Ren, Xiaoping Ouyang, Jionghui Wang, Qianling Zhang, Jiangtao Hu, Jianhong Liu
{"title":"亚微米硅阳极上氢键相互作用衍生的均质石墨烯涂层","authors":"Liewu Li,&nbsp;Yizhao Yang,&nbsp;Zhencheng Huang,&nbsp;Tao Huang,&nbsp;Weibin Chen,&nbsp;Xiaoyu Gong,&nbsp;Shenghua Ye,&nbsp;Hao Li,&nbsp;Shaoluan Huang,&nbsp;Wei Xiong,&nbsp;Jing Chen,&nbsp;Hongbin Wang,&nbsp;Xiangzhong Ren,&nbsp;Xiaoping Ouyang,&nbsp;Jionghui Wang,&nbsp;Qianling Zhang,&nbsp;Jiangtao Hu,&nbsp;Jianhong Liu","doi":"10.1002/bte2.20230068","DOIUrl":null,"url":null,"abstract":"<p>Silicon (Si) has emerged as a promising anode material in the pursuit of higher energy-density lithium-ion batteries (LIBs). The large-scale applications of Si anode, however, are hindered by its significant swelling, severe pulverization, and continuous electrode–electrolyte reaction. Therefore, the development of an efficient approach to mitigate Si particle swelling and minimize interface parasitic reactions has emerged as a prominent research focus in both academia and industry. Here, a facile and scalable strategy is reported for the preparation of a double-layer coated submicron Si anode, comprising ceramic (silicon oxide) and graphene layers, denoted as Si@SiO<sub>x</sub>@G. In this approach, SiO<sub>x</sub> is in situ synthesized on the surface of Si and bonded with graphene through hydrogen bond interactions. The prepared Si electrode shows exceptional structural integration and demonstrates outstanding electrochemical stability, with a capacity retention of 92.58% after 540 cycles at 1 A g<sup>−1</sup>, as well as remarkable rate capability, achieving a specific capacity of 875 mAh g<sup>−1</sup> at 2 A g<sup>−1</sup>. This study presents a straightforward yet pragmatic approach for the widespread implementation of high-energy-density silicon-based batteries.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230068","citationCount":"0","resultStr":"{\"title\":\"Hydrogen bond interaction derived homogeneous graphene coating on submicron silicon anode\",\"authors\":\"Liewu Li,&nbsp;Yizhao Yang,&nbsp;Zhencheng Huang,&nbsp;Tao Huang,&nbsp;Weibin Chen,&nbsp;Xiaoyu Gong,&nbsp;Shenghua Ye,&nbsp;Hao Li,&nbsp;Shaoluan Huang,&nbsp;Wei Xiong,&nbsp;Jing Chen,&nbsp;Hongbin Wang,&nbsp;Xiangzhong Ren,&nbsp;Xiaoping Ouyang,&nbsp;Jionghui Wang,&nbsp;Qianling Zhang,&nbsp;Jiangtao Hu,&nbsp;Jianhong Liu\",\"doi\":\"10.1002/bte2.20230068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon (Si) has emerged as a promising anode material in the pursuit of higher energy-density lithium-ion batteries (LIBs). The large-scale applications of Si anode, however, are hindered by its significant swelling, severe pulverization, and continuous electrode–electrolyte reaction. Therefore, the development of an efficient approach to mitigate Si particle swelling and minimize interface parasitic reactions has emerged as a prominent research focus in both academia and industry. Here, a facile and scalable strategy is reported for the preparation of a double-layer coated submicron Si anode, comprising ceramic (silicon oxide) and graphene layers, denoted as Si@SiO<sub>x</sub>@G. In this approach, SiO<sub>x</sub> is in situ synthesized on the surface of Si and bonded with graphene through hydrogen bond interactions. The prepared Si electrode shows exceptional structural integration and demonstrates outstanding electrochemical stability, with a capacity retention of 92.58% after 540 cycles at 1 A g<sup>−1</sup>, as well as remarkable rate capability, achieving a specific capacity of 875 mAh g<sup>−1</sup> at 2 A g<sup>−1</sup>. This study presents a straightforward yet pragmatic approach for the widespread implementation of high-energy-density silicon-based batteries.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硅(Si)已成为一种前景广阔的负极材料,用于制造能量密度更高的锂离子电池(LIB)。然而,硅负极的大规模应用因其显著的膨胀、严重的粉化和持续的电极-电解质反应而受到阻碍。因此,开发一种有效的方法来缓解硅颗粒膨胀并最大限度地减少界面寄生反应已成为学术界和工业界的一个突出研究重点。本文报告了一种简便且可扩展的策略,用于制备双层涂层亚微米硅阳极,包括陶瓷层(氧化硅)和石墨烯层,命名为 Si@SiOx@G。在这种方法中,氧化硅在硅表面原位合成,并通过氢键相互作用与石墨烯结合。所制备的硅电极具有优异的结构整合性和出色的电化学稳定性,在 1 A g-1 条件下循环 540 次后容量保持率达到 92.58%,同时还具有出色的速率能力,在 2 A g-1 条件下比容量达到 875 mAh g-1。这项研究为高能量密度硅基电池的广泛应用提供了一种简单而实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogen bond interaction derived homogeneous graphene coating on submicron silicon anode

Silicon (Si) has emerged as a promising anode material in the pursuit of higher energy-density lithium-ion batteries (LIBs). The large-scale applications of Si anode, however, are hindered by its significant swelling, severe pulverization, and continuous electrode–electrolyte reaction. Therefore, the development of an efficient approach to mitigate Si particle swelling and minimize interface parasitic reactions has emerged as a prominent research focus in both academia and industry. Here, a facile and scalable strategy is reported for the preparation of a double-layer coated submicron Si anode, comprising ceramic (silicon oxide) and graphene layers, denoted as Si@SiOx@G. In this approach, SiOx is in situ synthesized on the surface of Si and bonded with graphene through hydrogen bond interactions. The prepared Si electrode shows exceptional structural integration and demonstrates outstanding electrochemical stability, with a capacity retention of 92.58% after 540 cycles at 1 A g−1, as well as remarkable rate capability, achieving a specific capacity of 875 mAh g−1 at 2 A g−1. This study presents a straightforward yet pragmatic approach for the widespread implementation of high-energy-density silicon-based batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 3, Issue 6, November 2024 Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining ZnxMnO2/PPy Nanowires Composite as Cathode Material for Aqueous Zinc-Ion Hybrid Supercapacitors Manipulation in the In Situ Growth Design Parameters of Aqueous Zinc-Based Electrodes for Batteries: The Fundamentals and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1