基于双通道图注意网络的金融反欺诈

IF 5.1 3区 管理学 Q1 BUSINESS Journal of Theoretical and Applied Electronic Commerce Research Pub Date : 2024-02-02 DOI:10.3390/jtaer19010016
Sizheng Wei, Suan Lee
{"title":"基于双通道图注意网络的金融反欺诈","authors":"Sizheng Wei, Suan Lee","doi":"10.3390/jtaer19010016","DOIUrl":null,"url":null,"abstract":"This article addresses the pervasive issue of fraud in financial transactions by introducing the Graph Attention Network (GAN) into graph neural networks. The article integrates Node Attention Networks and Semantic Attention Networks to construct a Dual-Head Attention Network module, enabling a comprehensive analysis of complex relationships in user transaction data. This approach adeptly handles non-linear features and intricate data interaction relationships. The article incorporates a Gradient-Boosting Decision Tree (GBDT) to enhance fraud identification to create the GBDT–Dual-channel Graph Attention Network (GBDT-DGAN). In a bid to ensure user privacy, this article introduces blockchain technology, culminating in the development of a financial anti-fraud model that fuses blockchain with the GBDT-DGAN algorithm. Experimental verification demonstrates the model’s accuracy, reaching 93.82%, a notable improvement of at least 5.76% compared to baseline algorithms such as Convolutional Neural Networks. The recall and F1 values stand at 89.5% and 81.66%, respectively. Additionally, the model exhibits superior network data transmission security, maintaining a packet loss rate below 7%. Consequently, the proposed model significantly outperforms traditional approaches in financial fraud detection accuracy and ensures excellent network data transmission security, offering an efficient and secure solution for fraud detection in the financial domain.","PeriodicalId":46198,"journal":{"name":"Journal of Theoretical and Applied Electronic Commerce Research","volume":"54 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Financial Anti-Fraud Based on Dual-Channel Graph Attention Network\",\"authors\":\"Sizheng Wei, Suan Lee\",\"doi\":\"10.3390/jtaer19010016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses the pervasive issue of fraud in financial transactions by introducing the Graph Attention Network (GAN) into graph neural networks. The article integrates Node Attention Networks and Semantic Attention Networks to construct a Dual-Head Attention Network module, enabling a comprehensive analysis of complex relationships in user transaction data. This approach adeptly handles non-linear features and intricate data interaction relationships. The article incorporates a Gradient-Boosting Decision Tree (GBDT) to enhance fraud identification to create the GBDT–Dual-channel Graph Attention Network (GBDT-DGAN). In a bid to ensure user privacy, this article introduces blockchain technology, culminating in the development of a financial anti-fraud model that fuses blockchain with the GBDT-DGAN algorithm. Experimental verification demonstrates the model’s accuracy, reaching 93.82%, a notable improvement of at least 5.76% compared to baseline algorithms such as Convolutional Neural Networks. The recall and F1 values stand at 89.5% and 81.66%, respectively. Additionally, the model exhibits superior network data transmission security, maintaining a packet loss rate below 7%. Consequently, the proposed model significantly outperforms traditional approaches in financial fraud detection accuracy and ensures excellent network data transmission security, offering an efficient and secure solution for fraud detection in the financial domain.\",\"PeriodicalId\":46198,\"journal\":{\"name\":\"Journal of Theoretical and Applied Electronic Commerce Research\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Applied Electronic Commerce Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.3390/jtaer19010016\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Applied Electronic Commerce Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.3390/jtaer19010016","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过在图神经网络中引入图注意网络(GAN)来解决金融交易中普遍存在的欺诈问题。文章整合了节点注意网络和语义注意网络,构建了双头注意网络模块,从而能够全面分析用户交易数据中的复杂关系。这种方法能巧妙地处理非线性特征和错综复杂的数据交互关系。文章采用梯度提升决策树(GBDT)来增强欺诈识别能力,从而创建了 GBDT-双通道图注意网络(GBDT-DGAN)。为了确保用户隐私,本文引入了区块链技术,最终开发出一种金融反欺诈模型,将区块链与 GBDT-DGAN 算法相融合。实验验证表明,该模型的准确率高达 93.82%,与卷积神经网络等基线算法相比至少提高了 5.76%。召回率和 F1 值分别为 89.5% 和 81.66%。此外,该模型还表现出卓越的网络数据传输安全性,丢包率保持在 7% 以下。因此,所提出的模型在金融欺诈检测准确性方面明显优于传统方法,并确保了出色的网络数据传输安全性,为金融领域的欺诈检测提供了一种高效、安全的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Financial Anti-Fraud Based on Dual-Channel Graph Attention Network
This article addresses the pervasive issue of fraud in financial transactions by introducing the Graph Attention Network (GAN) into graph neural networks. The article integrates Node Attention Networks and Semantic Attention Networks to construct a Dual-Head Attention Network module, enabling a comprehensive analysis of complex relationships in user transaction data. This approach adeptly handles non-linear features and intricate data interaction relationships. The article incorporates a Gradient-Boosting Decision Tree (GBDT) to enhance fraud identification to create the GBDT–Dual-channel Graph Attention Network (GBDT-DGAN). In a bid to ensure user privacy, this article introduces blockchain technology, culminating in the development of a financial anti-fraud model that fuses blockchain with the GBDT-DGAN algorithm. Experimental verification demonstrates the model’s accuracy, reaching 93.82%, a notable improvement of at least 5.76% compared to baseline algorithms such as Convolutional Neural Networks. The recall and F1 values stand at 89.5% and 81.66%, respectively. Additionally, the model exhibits superior network data transmission security, maintaining a packet loss rate below 7%. Consequently, the proposed model significantly outperforms traditional approaches in financial fraud detection accuracy and ensures excellent network data transmission security, offering an efficient and secure solution for fraud detection in the financial domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
3.60%
发文量
67
期刊介绍: The Journal of Theoretical and Applied Electronic Commerce Research (JTAER) has been created to allow researchers, academicians and other professionals an agile and flexible channel of communication in which to share and debate new ideas and emerging technologies concerned with this rapidly evolving field. Business practices, social, cultural and legal concerns, personal privacy and security, communications technologies, mobile connectivity are among the important elements of electronic commerce and are becoming ever more relevant in everyday life. JTAER will assist in extending and improving the use of electronic commerce for the benefit of our society.
期刊最新文献
Can Influencer Persona Increase the Effectiveness of Social Media Video Ads? The Mediating Effect of Consumer Perceptions of Self Four-Party Evolutionary Game Analysis of Value Co-Creation Behavior of Bulk Logistics Enterprises in Digital Transformation Value Creation in Technology-Driven Ecosystems: Role of Coopetition in Industrial Networks Online Social Influence and Negative Emotions toward Snow Sports Brands: Moderation and Mediation Effects Direct Mail or Bonded Warehouse? Logistics Mode Selection in Cross-Border E-Commerce under Exchange Rate Risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1