{"title":"混合气分层对合成气燃烧火焰位移速度的详细分析","authors":"Rahul Patil, Sheshadri Sreedhara","doi":"10.1007/s10494-024-00530-w","DOIUrl":null,"url":null,"abstract":"<div><p>Gasoline direct injection engines can provide higher thermal efficiency and lower emissions than that for engines using conventional combustion techniques. Compositional stratification inside the combustion chamber opens possibilities for ultra-lean and low-temperature combustion. To explore this further, 2D direct numerical simulation (DNS) has been performed to investigate the propagation of syngas flame in an equivalence ratio (<i>ϕ</i>) stratified medium. Several aspects of flame propagation, such as effect of integral scale of mixing (<i>l</i><sub><i>ϕ</i></sub>) on the non-monotonic behavior of flame propagation, contribution of each chemical reaction to heat release rate (HRR), and the effect of differential diffusion were analyzed using DNS-data. A spherically expanding flame has been initiated with a hotspot at the center of the square domain of size 2.4 × 2.4 cm<sup>2</sup>. The variations in the degree of stratification were simulated varying <i>l</i><sub><i>ϕ</i></sub> and fluctuations <i>ϕ</i> for initial mixture distribution. Further this DNS-data has been used to analyze effects of stratification on flame displacement speed (<i>S</i><sub><i>d</i></sub>) and its components, viz. reaction rate (<i>S</i><sub><i>r</i></sub>), normal diffusion (<i>S</i><sub><i>n</i></sub>), tangential (<i>S</i><sub><i>t</i></sub>), and inhomogeneity (<i>S</i><sub><i>z</i></sub>). The results reveal that stratification-induced variations in thermal diffusivity resulted in thermal runaways. These thermal runaways influence the extent of burning for simulated cases. The increase in degree of stratification resulted in flame preferably propagating towards leaner <i>ϕ</i>, causing reduction in components of <i>S</i><sub><i>d</i></sub>. The preferential propagation of flame also resulted in shifting of peak reaction rate for fuel species (<i>c</i><sup><i>*</i></sup>) to a higher reaction progress variable (<i>c</i>). This shifting of <i>c</i><sup><i>*</i></sup>, lead to a reduction in the HRR contribution of reactions that attain their peak near the production zone of H and OH species. For unity <i>Le</i> simulations, <i>S</i><sub><i>n</i></sub> was observed to be reduced drastically compared to cases with differential diffusion, resulting in an overall reduction in <i>S</i><sub><i>d</i></sub>.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"112 4","pages":"1105 - 1126"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Detailed Analysis of Mixture Stratification on Flame Displacement Speed for Syngas Combustion\",\"authors\":\"Rahul Patil, Sheshadri Sreedhara\",\"doi\":\"10.1007/s10494-024-00530-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gasoline direct injection engines can provide higher thermal efficiency and lower emissions than that for engines using conventional combustion techniques. Compositional stratification inside the combustion chamber opens possibilities for ultra-lean and low-temperature combustion. To explore this further, 2D direct numerical simulation (DNS) has been performed to investigate the propagation of syngas flame in an equivalence ratio (<i>ϕ</i>) stratified medium. Several aspects of flame propagation, such as effect of integral scale of mixing (<i>l</i><sub><i>ϕ</i></sub>) on the non-monotonic behavior of flame propagation, contribution of each chemical reaction to heat release rate (HRR), and the effect of differential diffusion were analyzed using DNS-data. A spherically expanding flame has been initiated with a hotspot at the center of the square domain of size 2.4 × 2.4 cm<sup>2</sup>. The variations in the degree of stratification were simulated varying <i>l</i><sub><i>ϕ</i></sub> and fluctuations <i>ϕ</i> for initial mixture distribution. Further this DNS-data has been used to analyze effects of stratification on flame displacement speed (<i>S</i><sub><i>d</i></sub>) and its components, viz. reaction rate (<i>S</i><sub><i>r</i></sub>), normal diffusion (<i>S</i><sub><i>n</i></sub>), tangential (<i>S</i><sub><i>t</i></sub>), and inhomogeneity (<i>S</i><sub><i>z</i></sub>). The results reveal that stratification-induced variations in thermal diffusivity resulted in thermal runaways. These thermal runaways influence the extent of burning for simulated cases. The increase in degree of stratification resulted in flame preferably propagating towards leaner <i>ϕ</i>, causing reduction in components of <i>S</i><sub><i>d</i></sub>. The preferential propagation of flame also resulted in shifting of peak reaction rate for fuel species (<i>c</i><sup><i>*</i></sup>) to a higher reaction progress variable (<i>c</i>). This shifting of <i>c</i><sup><i>*</i></sup>, lead to a reduction in the HRR contribution of reactions that attain their peak near the production zone of H and OH species. For unity <i>Le</i> simulations, <i>S</i><sub><i>n</i></sub> was observed to be reduced drastically compared to cases with differential diffusion, resulting in an overall reduction in <i>S</i><sub><i>d</i></sub>.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"112 4\",\"pages\":\"1105 - 1126\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-024-00530-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00530-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
摘要
与使用传统燃烧技术的发动机相比,汽油直喷发动机可以提供更高的热效率和更低的排放。燃烧室内的成分分层为超低温燃烧提供了可能。为了进一步探讨这一问题,我们进行了二维直接数值模拟(DNS),以研究合成气火焰在当量比(j)分层介质中的传播。利用 DNS 数据分析了火焰传播的几个方面,如混合积分尺度(lϕ)对火焰传播非单调行为的影响、各化学反应对热释放率(HRR)的贡献以及微分扩散的影响。在尺寸为 2.4 × 2.4 cm2 的正方形域中心,以一个热点为起点,开始了球形膨胀火焰。通过改变初始混合物分布的 lϕ 和波动 ϕ,模拟了分层程度的变化。此外,还利用 DNS 数据分析了分层对火焰位移速度(Sd)及其组成部分(即反应速率(Sr)、正向扩散(Sn)、切向扩散(St)和不均匀性(Sz))的影响。结果显示,分层引起的热扩散率变化导致了热失控。这些热失控会影响模拟情况下的燃烧程度。分层程度的增加导致火焰更倾向于向更贫的ϕ方向传播,从而导致 Sd 分量的减少。火焰的优先传播还导致燃料种类的峰值反应速率(c*)向更高的反应进程变量(c)移动。c* 的移动导致在 H 和 OH 物种生成区附近达到峰值的反应对 HRR 的贡献减少。在 Unity Le 模拟中,与差分扩散情况相比,Sn 被观察到急剧下降,导致 Sd 整体下降。
A Detailed Analysis of Mixture Stratification on Flame Displacement Speed for Syngas Combustion
Gasoline direct injection engines can provide higher thermal efficiency and lower emissions than that for engines using conventional combustion techniques. Compositional stratification inside the combustion chamber opens possibilities for ultra-lean and low-temperature combustion. To explore this further, 2D direct numerical simulation (DNS) has been performed to investigate the propagation of syngas flame in an equivalence ratio (ϕ) stratified medium. Several aspects of flame propagation, such as effect of integral scale of mixing (lϕ) on the non-monotonic behavior of flame propagation, contribution of each chemical reaction to heat release rate (HRR), and the effect of differential diffusion were analyzed using DNS-data. A spherically expanding flame has been initiated with a hotspot at the center of the square domain of size 2.4 × 2.4 cm2. The variations in the degree of stratification were simulated varying lϕ and fluctuations ϕ for initial mixture distribution. Further this DNS-data has been used to analyze effects of stratification on flame displacement speed (Sd) and its components, viz. reaction rate (Sr), normal diffusion (Sn), tangential (St), and inhomogeneity (Sz). The results reveal that stratification-induced variations in thermal diffusivity resulted in thermal runaways. These thermal runaways influence the extent of burning for simulated cases. The increase in degree of stratification resulted in flame preferably propagating towards leaner ϕ, causing reduction in components of Sd. The preferential propagation of flame also resulted in shifting of peak reaction rate for fuel species (c*) to a higher reaction progress variable (c). This shifting of c*, lead to a reduction in the HRR contribution of reactions that attain their peak near the production zone of H and OH species. For unity Le simulations, Sn was observed to be reduced drastically compared to cases with differential diffusion, resulting in an overall reduction in Sd.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.