{"title":"根据血池 [99MTc] Tc-MDP 闪烁扫描图像对活动性幼年特发性关节炎进行机器学习诊断。","authors":"Hossein Kian Ara, Nafiseh Alemohammad, Zeinab Paymani, Marzieh Ebrahimi","doi":"10.1097/MNM.0000000000001822","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Neural network has widely been applied for medical classifications and disease diagnosis. This study employs deep learning to best discriminate Juvenile Idiopathic Arthritis (JIA), a pediatric chronic joint inflammatory disease, from healthy joints by exploring blood pool images of 2phase [ 99m Tc] Tc-MDP bone scintigraphy.</p><p><strong>Methods: </strong>Self-deigned multi-input Convolutional Neural Network (CNN) in addition to three available pre-trained models including VGG16, ResNet50 and Xception are applied on 1304 blood pool images of 326 healthy and known JIA children and adolescents (aged 1-16).</p><p><strong>Results: </strong>The self-designed model ROC analysis shows diagnostic efficiency with Area Under the Curve (AUC) 0.82 and 0.86 for knee and ankle joints, respectively. Among the three pertained models, VGG16 ROC analysis reveals AUC 0.76 and 0.81 for knee and ankle images, respectively.</p><p><strong>Conclusion: </strong>The self-designed model shows best performance on blood pool scintigraph diagnosis of patients with JIA. VGG16 was the most efficient model rather to other pre-trained networks. This study can pave the way of artificial intelligence (AI) application in nuclear medicine for the diagnosis of pediatric inflammatory disease.</p>","PeriodicalId":19708,"journal":{"name":"Nuclear Medicine Communications","volume":" ","pages":"355-361"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning diagnosis of active Juvenile Idiopathic Arthritis on blood pool [ 99M Tc] Tc-MDP scintigraphy images.\",\"authors\":\"Hossein Kian Ara, Nafiseh Alemohammad, Zeinab Paymani, Marzieh Ebrahimi\",\"doi\":\"10.1097/MNM.0000000000001822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Neural network has widely been applied for medical classifications and disease diagnosis. This study employs deep learning to best discriminate Juvenile Idiopathic Arthritis (JIA), a pediatric chronic joint inflammatory disease, from healthy joints by exploring blood pool images of 2phase [ 99m Tc] Tc-MDP bone scintigraphy.</p><p><strong>Methods: </strong>Self-deigned multi-input Convolutional Neural Network (CNN) in addition to three available pre-trained models including VGG16, ResNet50 and Xception are applied on 1304 blood pool images of 326 healthy and known JIA children and adolescents (aged 1-16).</p><p><strong>Results: </strong>The self-designed model ROC analysis shows diagnostic efficiency with Area Under the Curve (AUC) 0.82 and 0.86 for knee and ankle joints, respectively. Among the three pertained models, VGG16 ROC analysis reveals AUC 0.76 and 0.81 for knee and ankle images, respectively.</p><p><strong>Conclusion: </strong>The self-designed model shows best performance on blood pool scintigraph diagnosis of patients with JIA. VGG16 was the most efficient model rather to other pre-trained networks. This study can pave the way of artificial intelligence (AI) application in nuclear medicine for the diagnosis of pediatric inflammatory disease.</p>\",\"PeriodicalId\":19708,\"journal\":{\"name\":\"Nuclear Medicine Communications\",\"volume\":\" \",\"pages\":\"355-361\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Medicine Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MNM.0000000000001822\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Medicine Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MNM.0000000000001822","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Machine learning diagnosis of active Juvenile Idiopathic Arthritis on blood pool [ 99M Tc] Tc-MDP scintigraphy images.
Purpose: Neural network has widely been applied for medical classifications and disease diagnosis. This study employs deep learning to best discriminate Juvenile Idiopathic Arthritis (JIA), a pediatric chronic joint inflammatory disease, from healthy joints by exploring blood pool images of 2phase [ 99m Tc] Tc-MDP bone scintigraphy.
Methods: Self-deigned multi-input Convolutional Neural Network (CNN) in addition to three available pre-trained models including VGG16, ResNet50 and Xception are applied on 1304 blood pool images of 326 healthy and known JIA children and adolescents (aged 1-16).
Results: The self-designed model ROC analysis shows diagnostic efficiency with Area Under the Curve (AUC) 0.82 and 0.86 for knee and ankle joints, respectively. Among the three pertained models, VGG16 ROC analysis reveals AUC 0.76 and 0.81 for knee and ankle images, respectively.
Conclusion: The self-designed model shows best performance on blood pool scintigraph diagnosis of patients with JIA. VGG16 was the most efficient model rather to other pre-trained networks. This study can pave the way of artificial intelligence (AI) application in nuclear medicine for the diagnosis of pediatric inflammatory disease.
期刊介绍:
Nuclear Medicine Communications, the official journal of the British Nuclear Medicine Society, is a rapid communications journal covering nuclear medicine and molecular imaging with radionuclides, and the basic supporting sciences. As well as clinical research and commentary, manuscripts describing research on preclinical and basic sciences (radiochemistry, radiopharmacy, radiobiology, radiopharmacology, medical physics, computing and engineering, and technical and nursing professions involved in delivering nuclear medicine services) are welcomed, as the journal is intended to be of interest internationally to all members of the many medical and non-medical disciplines involved in nuclear medicine. In addition to papers reporting original studies, frankly written editorials and topical reviews are a regular feature of the journal.