{"title":"黄芪皂苷 IV 通过 miR-181a-3p/UPR-ERAD 轴克服非小细胞肺癌的安罗替尼耐药性","authors":"Lihuai Wang, Tonglin Sun, Xiao Yang, Zhi Wen, Yinhui Sun, Hua Liu","doi":"10.2174/0115734099252873231117072107","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Astragaloside IV (AS-IV) has been shown to have a curative effect on non-small cell lung cancer (NSCLC). This study aimed to elucidate the role of AS-IV in NSCLC cell anlotinib resistance (AR).</p><p><strong>Methods: </strong>The NSCLC/AR cells, resistant to anlotinib, have been produced. The role of AS-IV in the AR of NSCLC cells about the miR-181a-3p/unfolded protein response (UPR)- endoplasmic reticulum associated degradation (ERAD) pathway was then discussed by treating the cells with anlotinib or AS-IV, or by manipulating them with inhibitors or mimics of miR- 181a-3p, HRD1 or Derlin-1 overexpression plasmids.</p><p><strong>Results: </strong>We found that AS-IV could suppress the AR of NSCLC cells. In addition, miR-181a- 3p was elevated in NSCLC/AR cells. Functionally, AS-IV limited the AR of NSCLC cells by reducing miR-181a-3p. Further, activation of the UPR-ERAD pathway was correlated with AR in NSCLC cells. Increased sensitivity of NSCLC cells to anlotinib caused by miR-181a-3p inhibitor could be reversed by overexpression of HRD1 or Derlin-1.</p><p><strong>Conclusion: </strong>This research revealed a promising NSCLC/AR treatment approach by showing that AS-IV exposed NSCLC cells to anlotinib by inhibiting the miR-181a-3p/UPR-ERAD axis.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astragaloside IV Overcomes Anlotinib Resistance in Non-small Cell Lung Cancer through miR-181a-3p/UPR-ERAD Axis.\",\"authors\":\"Lihuai Wang, Tonglin Sun, Xiao Yang, Zhi Wen, Yinhui Sun, Hua Liu\",\"doi\":\"10.2174/0115734099252873231117072107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Astragaloside IV (AS-IV) has been shown to have a curative effect on non-small cell lung cancer (NSCLC). This study aimed to elucidate the role of AS-IV in NSCLC cell anlotinib resistance (AR).</p><p><strong>Methods: </strong>The NSCLC/AR cells, resistant to anlotinib, have been produced. The role of AS-IV in the AR of NSCLC cells about the miR-181a-3p/unfolded protein response (UPR)- endoplasmic reticulum associated degradation (ERAD) pathway was then discussed by treating the cells with anlotinib or AS-IV, or by manipulating them with inhibitors or mimics of miR- 181a-3p, HRD1 or Derlin-1 overexpression plasmids.</p><p><strong>Results: </strong>We found that AS-IV could suppress the AR of NSCLC cells. In addition, miR-181a- 3p was elevated in NSCLC/AR cells. Functionally, AS-IV limited the AR of NSCLC cells by reducing miR-181a-3p. Further, activation of the UPR-ERAD pathway was correlated with AR in NSCLC cells. Increased sensitivity of NSCLC cells to anlotinib caused by miR-181a-3p inhibitor could be reversed by overexpression of HRD1 or Derlin-1.</p><p><strong>Conclusion: </strong>This research revealed a promising NSCLC/AR treatment approach by showing that AS-IV exposed NSCLC cells to anlotinib by inhibiting the miR-181a-3p/UPR-ERAD axis.</p>\",\"PeriodicalId\":93961,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734099252873231117072107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099252873231117072107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Astragaloside IV Overcomes Anlotinib Resistance in Non-small Cell Lung Cancer through miR-181a-3p/UPR-ERAD Axis.
Background: Astragaloside IV (AS-IV) has been shown to have a curative effect on non-small cell lung cancer (NSCLC). This study aimed to elucidate the role of AS-IV in NSCLC cell anlotinib resistance (AR).
Methods: The NSCLC/AR cells, resistant to anlotinib, have been produced. The role of AS-IV in the AR of NSCLC cells about the miR-181a-3p/unfolded protein response (UPR)- endoplasmic reticulum associated degradation (ERAD) pathway was then discussed by treating the cells with anlotinib or AS-IV, or by manipulating them with inhibitors or mimics of miR- 181a-3p, HRD1 or Derlin-1 overexpression plasmids.
Results: We found that AS-IV could suppress the AR of NSCLC cells. In addition, miR-181a- 3p was elevated in NSCLC/AR cells. Functionally, AS-IV limited the AR of NSCLC cells by reducing miR-181a-3p. Further, activation of the UPR-ERAD pathway was correlated with AR in NSCLC cells. Increased sensitivity of NSCLC cells to anlotinib caused by miR-181a-3p inhibitor could be reversed by overexpression of HRD1 or Derlin-1.
Conclusion: This research revealed a promising NSCLC/AR treatment approach by showing that AS-IV exposed NSCLC cells to anlotinib by inhibiting the miR-181a-3p/UPR-ERAD axis.