Carlos Humberto Trasviña-Arenas, Luis Alejandro Ayala Medina, José Luis Vique-Sánchez
{"title":"通过分子对接筛选出的γ-分泌酶抑制剂,用于开发治疗阿尔茨海默病的新药。","authors":"Carlos Humberto Trasviña-Arenas, Luis Alejandro Ayala Medina, José Luis Vique-Sánchez","doi":"10.61186/rbmb.12.2.340","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer´s disease (AD) is one of the most common forms of dementia, is characterized by memory loss and cognitive impairment that affects more than 30 million people worldwide. The pathogenesis of Alzheimer's disease is primary driven by brain accumulation of the amyloid β peptide generated from the amyloid-β precursor protein (APP) via cleavages by β- and γ-secretase. In this study, we propose an approach by molecular docking to select compounds as γ-secretase inhibitors for decreasing the APP generation.</p><p><strong>Methods: </strong>We selected potential γ-secretase inhibitors by molecular docking in the potential site between Asp257, Lue268, Asp385, Ile387, Phe388, and Leu432 amino acids in presenilin-1 (PS-1), using a chemical library of over 500,000 compounds.</p><p><strong>Results: </strong>Eight compounds (AZ1 - AZ8) were selected by molecular docking to develop γ-secretase inhibitors for decreasing the APP generation.</p><p><strong>Conclusions: </strong>AZ1 - AZ8 compounds could be interacting in the potential site between Asp257, Lue268, Asp385, Ile387, Phe388, and Leu432 amino acids in PS-1. These compounds could specifically interact in the binding pocket in PS-1 to prevent/decrease the APP generation, to develop a new drug against Alzheimer's disease.</p>","PeriodicalId":45319,"journal":{"name":"Reports of Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838598/pdf/","citationCount":"0","resultStr":"{\"title\":\"γ-Secretase Inhibitors Selected by Molecular Docking, to Develop a New Drug Against Alzheimer's Disease.\",\"authors\":\"Carlos Humberto Trasviña-Arenas, Luis Alejandro Ayala Medina, José Luis Vique-Sánchez\",\"doi\":\"10.61186/rbmb.12.2.340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Alzheimer´s disease (AD) is one of the most common forms of dementia, is characterized by memory loss and cognitive impairment that affects more than 30 million people worldwide. The pathogenesis of Alzheimer's disease is primary driven by brain accumulation of the amyloid β peptide generated from the amyloid-β precursor protein (APP) via cleavages by β- and γ-secretase. In this study, we propose an approach by molecular docking to select compounds as γ-secretase inhibitors for decreasing the APP generation.</p><p><strong>Methods: </strong>We selected potential γ-secretase inhibitors by molecular docking in the potential site between Asp257, Lue268, Asp385, Ile387, Phe388, and Leu432 amino acids in presenilin-1 (PS-1), using a chemical library of over 500,000 compounds.</p><p><strong>Results: </strong>Eight compounds (AZ1 - AZ8) were selected by molecular docking to develop γ-secretase inhibitors for decreasing the APP generation.</p><p><strong>Conclusions: </strong>AZ1 - AZ8 compounds could be interacting in the potential site between Asp257, Lue268, Asp385, Ile387, Phe388, and Leu432 amino acids in PS-1. These compounds could specifically interact in the binding pocket in PS-1 to prevent/decrease the APP generation, to develop a new drug against Alzheimer's disease.</p>\",\"PeriodicalId\":45319,\"journal\":{\"name\":\"Reports of Biochemistry and Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838598/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61186/rbmb.12.2.340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Biochemistry and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/rbmb.12.2.340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
γ-Secretase Inhibitors Selected by Molecular Docking, to Develop a New Drug Against Alzheimer's Disease.
Background: Alzheimer´s disease (AD) is one of the most common forms of dementia, is characterized by memory loss and cognitive impairment that affects more than 30 million people worldwide. The pathogenesis of Alzheimer's disease is primary driven by brain accumulation of the amyloid β peptide generated from the amyloid-β precursor protein (APP) via cleavages by β- and γ-secretase. In this study, we propose an approach by molecular docking to select compounds as γ-secretase inhibitors for decreasing the APP generation.
Methods: We selected potential γ-secretase inhibitors by molecular docking in the potential site between Asp257, Lue268, Asp385, Ile387, Phe388, and Leu432 amino acids in presenilin-1 (PS-1), using a chemical library of over 500,000 compounds.
Results: Eight compounds (AZ1 - AZ8) were selected by molecular docking to develop γ-secretase inhibitors for decreasing the APP generation.
Conclusions: AZ1 - AZ8 compounds could be interacting in the potential site between Asp257, Lue268, Asp385, Ile387, Phe388, and Leu432 amino acids in PS-1. These compounds could specifically interact in the binding pocket in PS-1 to prevent/decrease the APP generation, to develop a new drug against Alzheimer's disease.
期刊介绍:
The Reports of Biochemistry & Molecular Biology (RBMB) is the official journal of the Varastegan Institute for Medical Sciences and is dedicated to furthering international exchange of medical and biomedical science experience and opinion and a platform for worldwide dissemination. The RBMB is a medical journal that gives special emphasis to biochemical research and molecular biology studies. The Journal invites original and review articles, short communications, reports on experiments and clinical cases, and case reports containing new insights into any aspect of biochemistry and molecular biology that are not published or being considered for publication elsewhere. Publications are accepted in the form of reports of original research, brief communications, case reports, structured reviews, editorials, commentaries, views and perspectives, letters to authors, book reviews, resources, news, and event agenda.