{"title":"海冰消失加速了碳循环并加剧了北极楚科奇海的季节性极端酸化现象","authors":"Yixing Zhang, Yingxu Wu, Wei-Jun Cai, Xiangqi Yi, Xiang Gao, Haibo Bi, Yanpei Zhuang, Liqi Chen, Di Qi","doi":"10.1002/lol2.10378","DOIUrl":null,"url":null,"abstract":"<p>The Chukchi Sea shelf (CSS) is a highly productive region in the Arctic Ocean and it is highly efficient for absorbing atmospheric carbon dioxide and exporting and retaining carbon in the deep sea. However, with global warming, the carbon retention time in CSS may decrease, leading to less efficient carbon export. Here, we investigate the seasonal variability of carbonate chemistry in CSS using three sets of late- vs. early-summer reoccupations of the same transect. Our findings demonstrate substantially increased and rapid degradation of biologically produced organic matter and therefore acidification over time in the southern CSS due to earlier sea-ice retreat, resulting in significantly shorter carbon retention time. In sharp contrast, no increased degradation has been observed in the northern CSS where photosynthesis has just commenced. In the future, climate change would further diminish the carbon export capacity and exacerbate seasonal acidification not only within CSS but also across other polar coastal oceans.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 4","pages":"433-441"},"PeriodicalIF":5.1000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10378","citationCount":"0","resultStr":"{\"title\":\"Sea-ice loss accelerates carbon cycling and enhances seasonal extremes of acidification in the Arctic Chukchi Sea\",\"authors\":\"Yixing Zhang, Yingxu Wu, Wei-Jun Cai, Xiangqi Yi, Xiang Gao, Haibo Bi, Yanpei Zhuang, Liqi Chen, Di Qi\",\"doi\":\"10.1002/lol2.10378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Chukchi Sea shelf (CSS) is a highly productive region in the Arctic Ocean and it is highly efficient for absorbing atmospheric carbon dioxide and exporting and retaining carbon in the deep sea. However, with global warming, the carbon retention time in CSS may decrease, leading to less efficient carbon export. Here, we investigate the seasonal variability of carbonate chemistry in CSS using three sets of late- vs. early-summer reoccupations of the same transect. Our findings demonstrate substantially increased and rapid degradation of biologically produced organic matter and therefore acidification over time in the southern CSS due to earlier sea-ice retreat, resulting in significantly shorter carbon retention time. In sharp contrast, no increased degradation has been observed in the northern CSS where photosynthesis has just commenced. In the future, climate change would further diminish the carbon export capacity and exacerbate seasonal acidification not only within CSS but also across other polar coastal oceans.</p>\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":\"9 4\",\"pages\":\"433-441\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10378\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10378\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10378","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Sea-ice loss accelerates carbon cycling and enhances seasonal extremes of acidification in the Arctic Chukchi Sea
The Chukchi Sea shelf (CSS) is a highly productive region in the Arctic Ocean and it is highly efficient for absorbing atmospheric carbon dioxide and exporting and retaining carbon in the deep sea. However, with global warming, the carbon retention time in CSS may decrease, leading to less efficient carbon export. Here, we investigate the seasonal variability of carbonate chemistry in CSS using three sets of late- vs. early-summer reoccupations of the same transect. Our findings demonstrate substantially increased and rapid degradation of biologically produced organic matter and therefore acidification over time in the southern CSS due to earlier sea-ice retreat, resulting in significantly shorter carbon retention time. In sharp contrast, no increased degradation has been observed in the northern CSS where photosynthesis has just commenced. In the future, climate change would further diminish the carbon export capacity and exacerbate seasonal acidification not only within CSS but also across other polar coastal oceans.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.