十字花科种子和植物的特殊代谢物修饰:多样性、功能和相关酶。

IF 10.2 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Natural Product Reports Pub Date : 2024-05-22 DOI:10.1039/d3np00043e
Léa Barreda , Céline Brosse , Stéphanie Boutet , François Perreau , Loïc Rajjou , Loïc Lepiniec , Massimiliano Corso
{"title":"十字花科种子和植物的特殊代谢物修饰:多样性、功能和相关酶。","authors":"Léa Barreda ,&nbsp;Céline Brosse ,&nbsp;Stéphanie Boutet ,&nbsp;François Perreau ,&nbsp;Loïc Rajjou ,&nbsp;Loïc Lepiniec ,&nbsp;Massimiliano Corso","doi":"10.1039/d3np00043e","DOIUrl":null,"url":null,"abstract":"<div><p>Covering: up to 2023</p></div><div><p>Specialized metabolite (SM) modifications and/or decorations, corresponding to the addition or removal of functional groups (<em>e.g.</em> hydroxyl, methyl, glycosyl or acyl group) to SM structures, contribute to the huge diversity of structures, activities and functions of seed and plant SMs. This review summarizes available knowledge (up to 2023) on SM modifications in Brassicaceae and their contribution to SM plasticity. We give a comprehensive overview on enzymes involved in the addition or removal of these functional groups. Brassicaceae, including model (<em>Arabidopsis thaliana</em>) and crop (<em>Brassica napus</em>, <em>Camelina sativa</em>) plant species, present a large diversity of plant and seed SMs, which makes them valuable models to study SM modifications. In this review, particular attention is given to the environmental plasticity of SM and relative modification and/or decoration enzymes. Furthermore, a spotlight is given to SMs and related modification enzymes in seeds of Brassicaceae species. Seeds constitute a large reservoir of beneficial SMs and are one of the most important dietary sources, providing more than half of the world's intake of dietary proteins, oil and starch. The seed tissue- and stage-specific expressions of <em>A. thaliana</em> genes involved in SM modification are presented and discussed in the context of available literature. Given the major role in plant phytochemistry, biology and ecology, SM modifications constitute a subject of study contributing to the research and development in agroecology, pharmaceutical, cosmetics and food industrial sectors.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specialized metabolite modifications in Brassicaceae seeds and plants: diversity, functions and related enzymes\",\"authors\":\"Léa Barreda ,&nbsp;Céline Brosse ,&nbsp;Stéphanie Boutet ,&nbsp;François Perreau ,&nbsp;Loïc Rajjou ,&nbsp;Loïc Lepiniec ,&nbsp;Massimiliano Corso\",\"doi\":\"10.1039/d3np00043e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covering: up to 2023</p></div><div><p>Specialized metabolite (SM) modifications and/or decorations, corresponding to the addition or removal of functional groups (<em>e.g.</em> hydroxyl, methyl, glycosyl or acyl group) to SM structures, contribute to the huge diversity of structures, activities and functions of seed and plant SMs. This review summarizes available knowledge (up to 2023) on SM modifications in Brassicaceae and their contribution to SM plasticity. We give a comprehensive overview on enzymes involved in the addition or removal of these functional groups. Brassicaceae, including model (<em>Arabidopsis thaliana</em>) and crop (<em>Brassica napus</em>, <em>Camelina sativa</em>) plant species, present a large diversity of plant and seed SMs, which makes them valuable models to study SM modifications. In this review, particular attention is given to the environmental plasticity of SM and relative modification and/or decoration enzymes. Furthermore, a spotlight is given to SMs and related modification enzymes in seeds of Brassicaceae species. Seeds constitute a large reservoir of beneficial SMs and are one of the most important dietary sources, providing more than half of the world's intake of dietary proteins, oil and starch. The seed tissue- and stage-specific expressions of <em>A. thaliana</em> genes involved in SM modification are presented and discussed in the context of available literature. Given the major role in plant phytochemistry, biology and ecology, SM modifications constitute a subject of study contributing to the research and development in agroecology, pharmaceutical, cosmetics and food industrial sectors.</p></div>\",\"PeriodicalId\":94,\"journal\":{\"name\":\"Natural Product Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S026505682400028X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S026505682400028X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

覆盖范围:截至 2023 年专门的代谢物(SM)修饰和/或装饰,相当于在 SM 结构上添加或去除官能团(如羟基、甲基、糖基或酰基),有助于种子和植物 SM 结构、活性和功能的巨大多样性。本综述总结了关于十字花科植物 SM 修饰的现有知识(截至 2023 年)及其对 SM 可塑性的贡献。我们全面概述了参与添加或去除这些功能基团的酶。十字花科植物,包括模式植物(拟南芥)和作物(油菜、荠菜),呈现出植物和种子 SM 的巨大多样性,这使它们成为研究 SM 修饰的宝贵模型。本综述特别关注 SM 的环境可塑性和相对修饰和/或装饰酶。此外,还重点介绍了十字花科物种种子中的 SMs 和相关修饰酶。种子蕴藏着大量有益的 SMs,是最重要的膳食来源之一,提供了全球一半以上的膳食蛋白质、油脂和淀粉摄入量。本文结合现有文献,介绍并讨论了参与 SM 修饰的 A. thaliana 基因在种子组织和阶段的特异性表达。鉴于 SM 在植物植物化学、生物学和生态学中的重要作用,SM 修饰是一个有助于农业生态学、制药、化妆品和食品工业部门研究和发展的研究课题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Specialized metabolite modifications in Brassicaceae seeds and plants: diversity, functions and related enzymes

Covering: up to 2023

Specialized metabolite (SM) modifications and/or decorations, corresponding to the addition or removal of functional groups (e.g. hydroxyl, methyl, glycosyl or acyl group) to SM structures, contribute to the huge diversity of structures, activities and functions of seed and plant SMs. This review summarizes available knowledge (up to 2023) on SM modifications in Brassicaceae and their contribution to SM plasticity. We give a comprehensive overview on enzymes involved in the addition or removal of these functional groups. Brassicaceae, including model (Arabidopsis thaliana) and crop (Brassica napus, Camelina sativa) plant species, present a large diversity of plant and seed SMs, which makes them valuable models to study SM modifications. In this review, particular attention is given to the environmental plasticity of SM and relative modification and/or decoration enzymes. Furthermore, a spotlight is given to SMs and related modification enzymes in seeds of Brassicaceae species. Seeds constitute a large reservoir of beneficial SMs and are one of the most important dietary sources, providing more than half of the world's intake of dietary proteins, oil and starch. The seed tissue- and stage-specific expressions of A. thaliana genes involved in SM modification are presented and discussed in the context of available literature. Given the major role in plant phytochemistry, biology and ecology, SM modifications constitute a subject of study contributing to the research and development in agroecology, pharmaceutical, cosmetics and food industrial sectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Product Reports
Natural Product Reports 化学-生化与分子生物学
CiteScore
21.20
自引率
3.40%
发文量
127
审稿时长
1.7 months
期刊介绍: Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis. With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results. NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.
期刊最新文献
Correction: Biosynthesis, biological activities, and structure-activity relationships of decalin-containing tetramic acid derivatives isolated from fungi. The dichapetalins and dichapetalin-type compounds: structural diversity, bioactivity, and future research perspectives. Biosynthesis, biological activities, and structure-activity relationships of decalin-containing tetramic acid derivatives isolated from fungi. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1