V. K. Gattu, J. Obregon, W. L. Ebert, J. E. Indacochea
{"title":"开路浸泡和顶点电位对金属生物材料电位极化扫描的影响","authors":"V. K. Gattu, J. Obregon, W. L. Ebert, J. E. Indacochea","doi":"10.1038/s41529-023-00420-y","DOIUrl":null,"url":null,"abstract":"Electrodes made of commercially pure titanium (CP-Ti) and a CoCrMo alloy are immersed at an open circuit in a phosphate buffer saline electrolyte at room temperature for different durations prior to electrochemical analyses. Open circuit potential measurements, electrochemical impedance spectroscopy measurements, and cyclic potentiodynamic polarization (CPP) scans are used to assess the impact of the immersion time on derived property values. Stable passivation layers formed on both materials during immersion. The corrosion potentials determined from the anodic legs of CPP scans become more cathodic, and the corrosion currents decrease to lower values after longer immersion times. Measured currents indicate the layers formed on CP-Ti stabilize during forward anodic scans and persist to the vertex potential, whereas passivation breakdown occurs during anodic scans with CoCrMo with active corrosion at voltages up to the vertex potential. The characteristics of the return cathodic legs of CPP scans represent the surface conditions at the vertex potential: characteristic corrosion property values derived from the test responses represent passive surfaces on CP-Ti and leached surfaces on CoCrMo rather than intrinsic properties of those materials.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-023-00420-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of open circuit immersion and vertex potential on potentiodynamic polarization scans of metallic biomaterials\",\"authors\":\"V. K. Gattu, J. Obregon, W. L. Ebert, J. E. Indacochea\",\"doi\":\"10.1038/s41529-023-00420-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrodes made of commercially pure titanium (CP-Ti) and a CoCrMo alloy are immersed at an open circuit in a phosphate buffer saline electrolyte at room temperature for different durations prior to electrochemical analyses. Open circuit potential measurements, electrochemical impedance spectroscopy measurements, and cyclic potentiodynamic polarization (CPP) scans are used to assess the impact of the immersion time on derived property values. Stable passivation layers formed on both materials during immersion. The corrosion potentials determined from the anodic legs of CPP scans become more cathodic, and the corrosion currents decrease to lower values after longer immersion times. Measured currents indicate the layers formed on CP-Ti stabilize during forward anodic scans and persist to the vertex potential, whereas passivation breakdown occurs during anodic scans with CoCrMo with active corrosion at voltages up to the vertex potential. The characteristics of the return cathodic legs of CPP scans represent the surface conditions at the vertex potential: characteristic corrosion property values derived from the test responses represent passive surfaces on CP-Ti and leached surfaces on CoCrMo rather than intrinsic properties of those materials.\",\"PeriodicalId\":19270,\"journal\":{\"name\":\"npj Materials Degradation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41529-023-00420-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Materials Degradation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41529-023-00420-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-023-00420-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of open circuit immersion and vertex potential on potentiodynamic polarization scans of metallic biomaterials
Electrodes made of commercially pure titanium (CP-Ti) and a CoCrMo alloy are immersed at an open circuit in a phosphate buffer saline electrolyte at room temperature for different durations prior to electrochemical analyses. Open circuit potential measurements, electrochemical impedance spectroscopy measurements, and cyclic potentiodynamic polarization (CPP) scans are used to assess the impact of the immersion time on derived property values. Stable passivation layers formed on both materials during immersion. The corrosion potentials determined from the anodic legs of CPP scans become more cathodic, and the corrosion currents decrease to lower values after longer immersion times. Measured currents indicate the layers formed on CP-Ti stabilize during forward anodic scans and persist to the vertex potential, whereas passivation breakdown occurs during anodic scans with CoCrMo with active corrosion at voltages up to the vertex potential. The characteristics of the return cathodic legs of CPP scans represent the surface conditions at the vertex potential: characteristic corrosion property values derived from the test responses represent passive surfaces on CP-Ti and leached surfaces on CoCrMo rather than intrinsic properties of those materials.
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies