利用碳纳米管提高脂肪酸朗缪尔-布洛杰特膜并入型半乳糖氧化酶的酶活性和电活性,用于传感和储能应用。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-03-05 Epub Date: 2024-02-09 DOI:10.1021/acsami.3c18824
Gabriel Nerath, Danilo A Oliveira, José R Siqueira, Luciano Caseli
{"title":"利用碳纳米管提高脂肪酸朗缪尔-布洛杰特膜并入型半乳糖氧化酶的酶活性和电活性,用于传感和储能应用。","authors":"Gabriel Nerath, Danilo A Oliveira, José R Siqueira, Luciano Caseli","doi":"10.1021/acsami.3c18824","DOIUrl":null,"url":null,"abstract":"<p><p>Incorporating enzymes into nanostructured supercapacitor devices represents a groundbreaking advancement in energy storage. Enzyme catalysis using nanomaterials enhances performance, efficiency, and stability by facilitating precise charge transfer, while the nanostructure provides a high surface area and improved conductivity. This synergy yields eco-friendly, high-performance energy storage solutions crucial for diverse applications, from portable electronics to renewable energy systems. In this study, we harnessed the versatility of Langmuir-Blodgett films to create meticulously organized thin films with specific enzyme properties, coupled with carbon nanotubes, to develop biosupercapacitors. Langmuir monolayers were constructed with stearic acid, carbon nanotubes, and galactose oxidase. Following comprehensive characterization using tensiometric, rheological, morphological, and spectroscopic techniques, the monolayers were transferred to solid supports, yielding Langmuir-Blodgett films. These films exhibited superior performance, with persisting enzyme activity. However, increasing film thickness did not enhance enzymatic activity values, indicating a surface-driven process. Subsequently, we explored the electrochemical properties of the films, revealing stability compatible with supercapacitor applications. The introduction of carbon nanotubes demonstrated a higher capacitance, indicating the potential viability of the films for energy storage applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"13018-13028"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Carbon Nanotubes to Improve Enzyme Activity and Electroactivity of Fatty Acid Langmuir-Blodgett Film-Incorporated Galactose Oxidase for Sensing and Energy Storage Applications.\",\"authors\":\"Gabriel Nerath, Danilo A Oliveira, José R Siqueira, Luciano Caseli\",\"doi\":\"10.1021/acsami.3c18824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Incorporating enzymes into nanostructured supercapacitor devices represents a groundbreaking advancement in energy storage. Enzyme catalysis using nanomaterials enhances performance, efficiency, and stability by facilitating precise charge transfer, while the nanostructure provides a high surface area and improved conductivity. This synergy yields eco-friendly, high-performance energy storage solutions crucial for diverse applications, from portable electronics to renewable energy systems. In this study, we harnessed the versatility of Langmuir-Blodgett films to create meticulously organized thin films with specific enzyme properties, coupled with carbon nanotubes, to develop biosupercapacitors. Langmuir monolayers were constructed with stearic acid, carbon nanotubes, and galactose oxidase. Following comprehensive characterization using tensiometric, rheological, morphological, and spectroscopic techniques, the monolayers were transferred to solid supports, yielding Langmuir-Blodgett films. These films exhibited superior performance, with persisting enzyme activity. However, increasing film thickness did not enhance enzymatic activity values, indicating a surface-driven process. Subsequently, we explored the electrochemical properties of the films, revealing stability compatible with supercapacitor applications. The introduction of carbon nanotubes demonstrated a higher capacitance, indicating the potential viability of the films for energy storage applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"13018-13028\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.3c18824\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.3c18824","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在纳米结构超级电容器装置中加入酶是能量存储领域的一项突破性进展。利用纳米材料进行酶催化可促进精确的电荷转移,从而提高性能、效率和稳定性,而纳米结构则提供了高表面积和更好的导电性。这种协同作用产生了环保、高性能的储能解决方案,对于从便携式电子设备到可再生能源系统等各种应用至关重要。在本研究中,我们利用朗缪尔-布洛杰特薄膜的多功能性,创造出具有特定酶特性的精心组织的薄膜,并与碳纳米管相结合,开发出生物超级电容器。我们用硬脂酸、碳纳米管和半乳糖氧化酶构建了朗缪尔单层膜。在使用张力测定法、流变学、形态学和光谱学技术对单层进行综合表征后,将其转移到固体支持物上,生成了朗缪尔-布洛杰特薄膜。这些薄膜表现出卓越的性能,具有持久的酶活性。然而,增加薄膜厚度并不能提高酶活性值,这表明这是一个表面驱动过程。随后,我们探索了薄膜的电化学特性,发现其稳定性与超级电容器的应用相匹配。碳纳米管的引入显示了更高的电容,这表明薄膜在能量存储应用方面具有潜在的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Carbon Nanotubes to Improve Enzyme Activity and Electroactivity of Fatty Acid Langmuir-Blodgett Film-Incorporated Galactose Oxidase for Sensing and Energy Storage Applications.

Incorporating enzymes into nanostructured supercapacitor devices represents a groundbreaking advancement in energy storage. Enzyme catalysis using nanomaterials enhances performance, efficiency, and stability by facilitating precise charge transfer, while the nanostructure provides a high surface area and improved conductivity. This synergy yields eco-friendly, high-performance energy storage solutions crucial for diverse applications, from portable electronics to renewable energy systems. In this study, we harnessed the versatility of Langmuir-Blodgett films to create meticulously organized thin films with specific enzyme properties, coupled with carbon nanotubes, to develop biosupercapacitors. Langmuir monolayers were constructed with stearic acid, carbon nanotubes, and galactose oxidase. Following comprehensive characterization using tensiometric, rheological, morphological, and spectroscopic techniques, the monolayers were transferred to solid supports, yielding Langmuir-Blodgett films. These films exhibited superior performance, with persisting enzyme activity. However, increasing film thickness did not enhance enzymatic activity values, indicating a surface-driven process. Subsequently, we explored the electrochemical properties of the films, revealing stability compatible with supercapacitor applications. The introduction of carbon nanotubes demonstrated a higher capacitance, indicating the potential viability of the films for energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Bioabsorbable Stent-Covering with Sustained Anticoagulant Activity Fabricated via Alternate Layer-by-Layer Self-Assembly of Heparin and Silk Fibroin Parallelized Droplet Vitrification for Single-Run Vitrification of Hepatocytes from an Entire Rat Liver In Situ Electrochemical Activation Strategy toward Organic Cation Preintercalated Layered Vanadium-Based Oxide Cathode for High-Performance Aqueous Zinc-Ion Batteries Influence of Surface Chemistry and Nanomechanical Properties of Methacrylate-Based Copolymer Thin Films on Keratocyte Cell Adhesion Contact Resistance Optimization in MoS2 Field-Effect Transistors through Reverse Sputtering-Induced Structural Modifications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1