David C. Markel, Paula R. Dietz, Bin Wu, Liang Chen, Therese Bou-Akl, Tong Shi, Weiping Ren
{"title":"用可注射的掺锶(Sr)聚磷酸二钙(P-DCPD)陶瓷骨移植物修复大鼠小腿缺损。","authors":"David C. Markel, Paula R. Dietz, Bin Wu, Liang Chen, Therese Bou-Akl, Tong Shi, Weiping Ren","doi":"10.1002/jbm.b.35388","DOIUrl":null,"url":null,"abstract":"<p>The trace element strontium (Sr) enhances new bone formation. However, delivering Sr, like other materials, in a sustained manner from a ceramic bone graft substitute (BGS) is difficult. We developed a novel ceramic BGS, polyphosphate dicalcium phosphate dehydrate (P-DCPD), which delivers embedded drugs in a sustained pattern. This study assessed the in vitro and in vivo performance of Sr-doped P-DCPD. In vitro P-DCPD and 10%Sr-P-DCPD were nontoxic and eluents from 10%Sr-P-DCPD significantly enhanced osteoblastic MC3T3 cell differentiation. A sustained, zero-order Sr release was observed from 10%Sr-P-DCPD for up to 70 days. When using this BGS in a rat calvaria defect model, both P-DCPD and 10% Sr-P-DCPD were found to be biocompatible and biodegradable. Histologic data from decalcified and undecalcified tissue showed that 10%Sr-P-DCPD had more extensive new bone formation compared with P-DCPD 12-weeks after surgery and the 10%Sr-P-DCPD had more organized new bone and much less fibrous tissue at the defect margins. The new bone was formed on the surface of the degraded ceramic debris within the bone defect area. P-DCPD represented a promising drug-eluting BGS for repair of critical bone defects.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repair of a rat calvaria defect with injectable strontium (Sr)-doped polyphosphate dicalcium phosphate dehydrate (P-DCPD) ceramic bone grafts\",\"authors\":\"David C. Markel, Paula R. Dietz, Bin Wu, Liang Chen, Therese Bou-Akl, Tong Shi, Weiping Ren\",\"doi\":\"10.1002/jbm.b.35388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The trace element strontium (Sr) enhances new bone formation. However, delivering Sr, like other materials, in a sustained manner from a ceramic bone graft substitute (BGS) is difficult. We developed a novel ceramic BGS, polyphosphate dicalcium phosphate dehydrate (P-DCPD), which delivers embedded drugs in a sustained pattern. This study assessed the in vitro and in vivo performance of Sr-doped P-DCPD. In vitro P-DCPD and 10%Sr-P-DCPD were nontoxic and eluents from 10%Sr-P-DCPD significantly enhanced osteoblastic MC3T3 cell differentiation. A sustained, zero-order Sr release was observed from 10%Sr-P-DCPD for up to 70 days. When using this BGS in a rat calvaria defect model, both P-DCPD and 10% Sr-P-DCPD were found to be biocompatible and biodegradable. Histologic data from decalcified and undecalcified tissue showed that 10%Sr-P-DCPD had more extensive new bone formation compared with P-DCPD 12-weeks after surgery and the 10%Sr-P-DCPD had more organized new bone and much less fibrous tissue at the defect margins. The new bone was formed on the surface of the degraded ceramic debris within the bone defect area. P-DCPD represented a promising drug-eluting BGS for repair of critical bone defects.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35388\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35388","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Repair of a rat calvaria defect with injectable strontium (Sr)-doped polyphosphate dicalcium phosphate dehydrate (P-DCPD) ceramic bone grafts
The trace element strontium (Sr) enhances new bone formation. However, delivering Sr, like other materials, in a sustained manner from a ceramic bone graft substitute (BGS) is difficult. We developed a novel ceramic BGS, polyphosphate dicalcium phosphate dehydrate (P-DCPD), which delivers embedded drugs in a sustained pattern. This study assessed the in vitro and in vivo performance of Sr-doped P-DCPD. In vitro P-DCPD and 10%Sr-P-DCPD were nontoxic and eluents from 10%Sr-P-DCPD significantly enhanced osteoblastic MC3T3 cell differentiation. A sustained, zero-order Sr release was observed from 10%Sr-P-DCPD for up to 70 days. When using this BGS in a rat calvaria defect model, both P-DCPD and 10% Sr-P-DCPD were found to be biocompatible and biodegradable. Histologic data from decalcified and undecalcified tissue showed that 10%Sr-P-DCPD had more extensive new bone formation compared with P-DCPD 12-weeks after surgery and the 10%Sr-P-DCPD had more organized new bone and much less fibrous tissue at the defect margins. The new bone was formed on the surface of the degraded ceramic debris within the bone defect area. P-DCPD represented a promising drug-eluting BGS for repair of critical bone defects.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.