Muhammad Arslan Mahmood, Rubab Zahra Naqvi, Imran Amin, Shahid Mansoor
{"title":"水杨酸驱动的植物先天性抗病毒免疫。","authors":"Muhammad Arslan Mahmood, Rubab Zahra Naqvi, Imran Amin, Shahid Mansoor","doi":"10.1016/j.tplants.2024.01.009","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic viruses are a constant threat to all organisms, including plants. However, in plants, a small group of cells (stem cells) protect themselves from viral invasion. Recently, Incarbone et al. uncovered a novel salicylic acid (SA) and RNAi mechanism of stem cell resistance, broadening our understanding of RNAi-mediated antiviral plant immunity.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salicylic acid-driven innate antiviral immunity in plants.\",\"authors\":\"Muhammad Arslan Mahmood, Rubab Zahra Naqvi, Imran Amin, Shahid Mansoor\",\"doi\":\"10.1016/j.tplants.2024.01.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pathogenic viruses are a constant threat to all organisms, including plants. However, in plants, a small group of cells (stem cells) protect themselves from viral invasion. Recently, Incarbone et al. uncovered a novel salicylic acid (SA) and RNAi mechanism of stem cell resistance, broadening our understanding of RNAi-mediated antiviral plant immunity.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2024.01.009\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.01.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Salicylic acid-driven innate antiviral immunity in plants.
Pathogenic viruses are a constant threat to all organisms, including plants. However, in plants, a small group of cells (stem cells) protect themselves from viral invasion. Recently, Incarbone et al. uncovered a novel salicylic acid (SA) and RNAi mechanism of stem cell resistance, broadening our understanding of RNAi-mediated antiviral plant immunity.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.