Neha Paras , Shiromani Balmukund Rahi , Abhishek Kumar Upadhyay , Manisha Bharti , Young Suh Song
{"title":"设计和分析用于非易失性存储器应用的新型 La:HfO2 栅极叠层铁电隧道场效应晶体管","authors":"Neha Paras , Shiromani Balmukund Rahi , Abhishek Kumar Upadhyay , Manisha Bharti , Young Suh Song","doi":"10.1016/j.memori.2024.100101","DOIUrl":null,"url":null,"abstract":"<div><p>Recent experimental studies have shown lanthanum-doped hafnium oxide (La:HfO<sub>2</sub>) possessing ferroelectric properties. This material is of special interest since it is based on lead-free, simple binary oxide of HfO<sub>2</sub>, and has excellent endurance property (1 × 10<sup>9</sup> field cycles without fatigue. There exists substantial information about the material aspects of La:HfO<sub>2</sub> but it lacks proven application potential for CMOS-compatible low-power memory design. In this work, 10 % La metal cation fraction of HfO<sub>2</sub> (La:HfO<sub>2</sub>) is proposed as the gate stack material in tunnel FET (TFET) for its potential as a memory device. 2D device simulations are carried out to show that the proposed ferroelectric TFET (FeTFET) provides the largest memory window (MW) as compared to present perovskite ferroelectric materials such as PZT, SBT (SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>) and silicon doped (4.6 % Si in HfO<sub>2</sub>) hafnium oxide (Si:HfO<sub>2</sub>). The larger window is attributed to greater polarization, and the calculation of MW is quantified by the shift in threshold voltage (V<sub>th</sub>). The simulations carried out in this work suggest that La:HfO<sub>2</sub> can be adopted as a potential ferroelectric material to target low-power FeTFET design at significantly reduced ferroelectric layer thickness.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"7 ","pages":"Article 100101"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773064624000033/pdfft?md5=22395a41426eb2f704ddea26a21f4352&pid=1-s2.0-S2773064624000033-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of novel La:HfO2 gate stacked ferroelectric tunnel FET for non-volatile memory applications\",\"authors\":\"Neha Paras , Shiromani Balmukund Rahi , Abhishek Kumar Upadhyay , Manisha Bharti , Young Suh Song\",\"doi\":\"10.1016/j.memori.2024.100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent experimental studies have shown lanthanum-doped hafnium oxide (La:HfO<sub>2</sub>) possessing ferroelectric properties. This material is of special interest since it is based on lead-free, simple binary oxide of HfO<sub>2</sub>, and has excellent endurance property (1 × 10<sup>9</sup> field cycles without fatigue. There exists substantial information about the material aspects of La:HfO<sub>2</sub> but it lacks proven application potential for CMOS-compatible low-power memory design. In this work, 10 % La metal cation fraction of HfO<sub>2</sub> (La:HfO<sub>2</sub>) is proposed as the gate stack material in tunnel FET (TFET) for its potential as a memory device. 2D device simulations are carried out to show that the proposed ferroelectric TFET (FeTFET) provides the largest memory window (MW) as compared to present perovskite ferroelectric materials such as PZT, SBT (SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>) and silicon doped (4.6 % Si in HfO<sub>2</sub>) hafnium oxide (Si:HfO<sub>2</sub>). The larger window is attributed to greater polarization, and the calculation of MW is quantified by the shift in threshold voltage (V<sub>th</sub>). The simulations carried out in this work suggest that La:HfO<sub>2</sub> can be adopted as a potential ferroelectric material to target low-power FeTFET design at significantly reduced ferroelectric layer thickness.</p></div>\",\"PeriodicalId\":100915,\"journal\":{\"name\":\"Memories - Materials, Devices, Circuits and Systems\",\"volume\":\"7 \",\"pages\":\"Article 100101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773064624000033/pdfft?md5=22395a41426eb2f704ddea26a21f4352&pid=1-s2.0-S2773064624000033-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memories - Materials, Devices, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773064624000033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064624000033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and analysis of novel La:HfO2 gate stacked ferroelectric tunnel FET for non-volatile memory applications
Recent experimental studies have shown lanthanum-doped hafnium oxide (La:HfO2) possessing ferroelectric properties. This material is of special interest since it is based on lead-free, simple binary oxide of HfO2, and has excellent endurance property (1 × 109 field cycles without fatigue. There exists substantial information about the material aspects of La:HfO2 but it lacks proven application potential for CMOS-compatible low-power memory design. In this work, 10 % La metal cation fraction of HfO2 (La:HfO2) is proposed as the gate stack material in tunnel FET (TFET) for its potential as a memory device. 2D device simulations are carried out to show that the proposed ferroelectric TFET (FeTFET) provides the largest memory window (MW) as compared to present perovskite ferroelectric materials such as PZT, SBT (SrBi2Ta2O9) and silicon doped (4.6 % Si in HfO2) hafnium oxide (Si:HfO2). The larger window is attributed to greater polarization, and the calculation of MW is quantified by the shift in threshold voltage (Vth). The simulations carried out in this work suggest that La:HfO2 can be adopted as a potential ferroelectric material to target low-power FeTFET design at significantly reduced ferroelectric layer thickness.