Huimin ZHOU , Nuannuan YANG , Haichao FU , Meijun WANG , Yanfeng SHEN , Dong LIU , Jiancheng WANG , Liping CHANG
{"title":"添加 KOH 对煤基活性炭泡沫电化学性能的影响","authors":"Huimin ZHOU , Nuannuan YANG , Haichao FU , Meijun WANG , Yanfeng SHEN , Dong LIU , Jiancheng WANG , Liping CHANG","doi":"10.1016/S1872-5813(23)60372-X","DOIUrl":null,"url":null,"abstract":"<div><p>Using strong-caking coking coal as raw material, coal-based carbon foam (NCF) was prepared by constant pressing and self-foaming method and used as carbon base to produce coal-based active carbon foamed (HPCs) together with KOH activator, which was used as electrode material for double-layer capacitor. The effects of KOH added by mechanical mixing, aqueous solution impregnation and ethanol solution impregnation methods on microstructure and electrochemical properties of the prepared materials were studied. The results show that formation of pore structure, crystal structure, surface chemistry and electrochemical performance of HPCs are significantly affected by KOH dispersion and adhesion. The NCF itself has a three-dimensional connected bubble pore structure, which is conducive to the activator (KOH) penetrating into the bubble pore and providing a large number of attachment sites, thus increasing the contact area between the activator and the carbon matrix and resulting in efficient activation. The good fluidity of KOH solution can make K<sup>+</sup> more effectively interspersed in the bubble structure of NCF, act on the defect site during activation, and generate more micropores and mesoporous structures on the internal matrix of carbon matrix, effectively amplifying the activation effect. ACF-W obtained by KOH aqueous impregnation has the highest specific surface area (3098.35 m<sup>2</sup>/g), total pore volume (1.68 cm<sup>3</sup>/g), mesoporous volume ratio (59.13%). It shows excellent specific capacitance (310 F/g) and cycle stability when used as electrode material.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 2","pages":"Pages 249-264"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of KOH addition on electrochemical properties of coal-based active carbon foams\",\"authors\":\"Huimin ZHOU , Nuannuan YANG , Haichao FU , Meijun WANG , Yanfeng SHEN , Dong LIU , Jiancheng WANG , Liping CHANG\",\"doi\":\"10.1016/S1872-5813(23)60372-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using strong-caking coking coal as raw material, coal-based carbon foam (NCF) was prepared by constant pressing and self-foaming method and used as carbon base to produce coal-based active carbon foamed (HPCs) together with KOH activator, which was used as electrode material for double-layer capacitor. The effects of KOH added by mechanical mixing, aqueous solution impregnation and ethanol solution impregnation methods on microstructure and electrochemical properties of the prepared materials were studied. The results show that formation of pore structure, crystal structure, surface chemistry and electrochemical performance of HPCs are significantly affected by KOH dispersion and adhesion. The NCF itself has a three-dimensional connected bubble pore structure, which is conducive to the activator (KOH) penetrating into the bubble pore and providing a large number of attachment sites, thus increasing the contact area between the activator and the carbon matrix and resulting in efficient activation. The good fluidity of KOH solution can make K<sup>+</sup> more effectively interspersed in the bubble structure of NCF, act on the defect site during activation, and generate more micropores and mesoporous structures on the internal matrix of carbon matrix, effectively amplifying the activation effect. ACF-W obtained by KOH aqueous impregnation has the highest specific surface area (3098.35 m<sup>2</sup>/g), total pore volume (1.68 cm<sup>3</sup>/g), mesoporous volume ratio (59.13%). It shows excellent specific capacitance (310 F/g) and cycle stability when used as electrode material.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"52 2\",\"pages\":\"Pages 249-264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187258132360372X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187258132360372X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Effect of KOH addition on electrochemical properties of coal-based active carbon foams
Using strong-caking coking coal as raw material, coal-based carbon foam (NCF) was prepared by constant pressing and self-foaming method and used as carbon base to produce coal-based active carbon foamed (HPCs) together with KOH activator, which was used as electrode material for double-layer capacitor. The effects of KOH added by mechanical mixing, aqueous solution impregnation and ethanol solution impregnation methods on microstructure and electrochemical properties of the prepared materials were studied. The results show that formation of pore structure, crystal structure, surface chemistry and electrochemical performance of HPCs are significantly affected by KOH dispersion and adhesion. The NCF itself has a three-dimensional connected bubble pore structure, which is conducive to the activator (KOH) penetrating into the bubble pore and providing a large number of attachment sites, thus increasing the contact area between the activator and the carbon matrix and resulting in efficient activation. The good fluidity of KOH solution can make K+ more effectively interspersed in the bubble structure of NCF, act on the defect site during activation, and generate more micropores and mesoporous structures on the internal matrix of carbon matrix, effectively amplifying the activation effect. ACF-W obtained by KOH aqueous impregnation has the highest specific surface area (3098.35 m2/g), total pore volume (1.68 cm3/g), mesoporous volume ratio (59.13%). It shows excellent specific capacitance (310 F/g) and cycle stability when used as electrode material.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.