通过正则化扩展有限元法分析带钢连接件的 LVL 木桁架失效的三维正交破坏模型

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED Finite Elements in Analysis and Design Pub Date : 2024-02-10 DOI:10.1016/j.finel.2024.104125
Elena Benvenuti, Andrea Fabbri, Fabio Minghini, Nicola Orlando, Nerio Tullini
{"title":"通过正则化扩展有限元法分析带钢连接件的 LVL 木桁架失效的三维正交破坏模型","authors":"Elena Benvenuti,&nbsp;Andrea Fabbri,&nbsp;Fabio Minghini,&nbsp;Nicola Orlando,&nbsp;Nerio Tullini","doi":"10.1016/j.finel.2024.104125","DOIUrl":null,"url":null,"abstract":"<div><p>Any three-dimensional finite element analysis of the failure of wood trusses necessarily incurs several markedly nonlinear effects, including the co-existence of orthotropic ductile and brittle failure modes depending on entangled tensile, shearing, and compressive stress states, and the mesh dependency inherent in the adoption of softening stress state laws. The complexity of the modelling process is even more severe in the presence of steel connectors. Furthermore, the experimental evidence shows that the failure modes and patterns often vary in a significant way even for the same specimen geometry and in the presence of highly engineered timber because of the persistence of defects and heterogeneities. Therefore, ad hoc computational models should be able to capture this peculiar variability of failure configurations. All these issues are properly tackled by the present nonlinear finite element procedure. The adoption of a regularized extension of the extended finite element method, indeed, allows for transitioning from the continuous interpolation of the displacement field within an orthotropic elastic-damaging material to a regularized discontinuous kinematic description based on a length-enriched extended finite element method. The present formulation is successfully validated by simulating experimental data concerning a set of failure tests on Laminated Veneer Lumber trusses with pulled steel connector.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168874X24000192/pdfft?md5=a6528c2e6737546204fbd630c21ae4bf&pid=1-s2.0-S0168874X24000192-main.pdf","citationCount":"0","resultStr":"{\"title\":\"3D orthotropic damage model for the failure analysis of LVL wood truss with steel connector through a regularized extended finite element method\",\"authors\":\"Elena Benvenuti,&nbsp;Andrea Fabbri,&nbsp;Fabio Minghini,&nbsp;Nicola Orlando,&nbsp;Nerio Tullini\",\"doi\":\"10.1016/j.finel.2024.104125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Any three-dimensional finite element analysis of the failure of wood trusses necessarily incurs several markedly nonlinear effects, including the co-existence of orthotropic ductile and brittle failure modes depending on entangled tensile, shearing, and compressive stress states, and the mesh dependency inherent in the adoption of softening stress state laws. The complexity of the modelling process is even more severe in the presence of steel connectors. Furthermore, the experimental evidence shows that the failure modes and patterns often vary in a significant way even for the same specimen geometry and in the presence of highly engineered timber because of the persistence of defects and heterogeneities. Therefore, ad hoc computational models should be able to capture this peculiar variability of failure configurations. All these issues are properly tackled by the present nonlinear finite element procedure. The adoption of a regularized extension of the extended finite element method, indeed, allows for transitioning from the continuous interpolation of the displacement field within an orthotropic elastic-damaging material to a regularized discontinuous kinematic description based on a length-enriched extended finite element method. The present formulation is successfully validated by simulating experimental data concerning a set of failure tests on Laminated Veneer Lumber trusses with pulled steel connector.</p></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24000192/pdfft?md5=a6528c2e6737546204fbd630c21ae4bf&pid=1-s2.0-S0168874X24000192-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24000192\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24000192","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对木桁架破坏进行任何三维有限元分析,都必然会产生几种明显的非线性效应,包括正交韧性和脆性破坏模式的共存,这取决于纠缠在一起的拉伸、剪切和压缩应力状态,以及采用软化应力状态法则所固有的网格依赖性。在存在钢连接件的情况下,建模过程的复杂性甚至更加严重。此外,实验证据表明,由于缺陷和异质性的持续存在,即使是相同几何形状的试样,以及高度工程化的木材,其失效模式和形态也往往存在显著差异。因此,专门的计算模型应该能够捕捉到失效配置的这种特殊变化。目前的非线性有限元程序可妥善解决所有这些问题。事实上,采用扩展有限元法的正则化扩展,可以从正交弹性损伤材料内部位移场的连续插值,过渡到基于长度富集扩展有限元法的正则化不连续运动学描述。通过模拟带有拉伸钢连接件的层压单板板材桁架的一系列失效试验数据,本公式得到了成功验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D orthotropic damage model for the failure analysis of LVL wood truss with steel connector through a regularized extended finite element method

Any three-dimensional finite element analysis of the failure of wood trusses necessarily incurs several markedly nonlinear effects, including the co-existence of orthotropic ductile and brittle failure modes depending on entangled tensile, shearing, and compressive stress states, and the mesh dependency inherent in the adoption of softening stress state laws. The complexity of the modelling process is even more severe in the presence of steel connectors. Furthermore, the experimental evidence shows that the failure modes and patterns often vary in a significant way even for the same specimen geometry and in the presence of highly engineered timber because of the persistence of defects and heterogeneities. Therefore, ad hoc computational models should be able to capture this peculiar variability of failure configurations. All these issues are properly tackled by the present nonlinear finite element procedure. The adoption of a regularized extension of the extended finite element method, indeed, allows for transitioning from the continuous interpolation of the displacement field within an orthotropic elastic-damaging material to a regularized discontinuous kinematic description based on a length-enriched extended finite element method. The present formulation is successfully validated by simulating experimental data concerning a set of failure tests on Laminated Veneer Lumber trusses with pulled steel connector.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
期刊最新文献
Investigation of nonlinear buckling of FGM shells using a high-order finite continuation approach Impact of surface roughness on the formation of necking instabilities in additive manufactured porous metal plates subjected to dynamic plane strain stretching Dual failure analysis of 3D structures under cyclic loads using bFS-FEM based numerical approaches 3D analysis of reinforced concrete structural components using a multi-surface elasto-plastic-anisotropic-damage material model Efficient thermal modeling of laser directed energy deposition using the forward Euler scheme: Methodology, merits and limitations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1