火灾条件下砖石结构的热力学分析

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED Finite Elements in Analysis and Design Pub Date : 2024-02-13 DOI:10.1016/j.finel.2024.104128
Daniele Pellegrini
{"title":"火灾条件下砖石结构的热力学分析","authors":"Daniele Pellegrini","doi":"10.1016/j.finel.2024.104128","DOIUrl":null,"url":null,"abstract":"<div><p>Historic masonry buildings are highly vulnerable to anthropic actions and environmental factors due to their low tensile strength, and bounded compressive strength. Over the years, numerous studies and experimental campaigns have been conducted to characterise the buildings’ response to external actions and identify solutions for their conservation against multiple factors, such as climatic changes, material ageing and earthquakes. However, the historic masonry structures’ response in case of fire and their safety assessment in post-fire conditions, still needs to be thoroughly investigated both from an experimental and numerical point of view. This paper generalises the constitutive equation of <em>masonry-like</em> (or no-tension) materials under non-isothermal conditions to the case in which the masonry has weak tensile strength and bounded compressive strength, even temperature dependent. The generalised constitutive equation is then implemented in NOSA-ITACA and the explicit solution to the equilibrium problem of a masonry circular ring in plane strain condition is calculated and compared with the numerical solution. Subsequently, the code is used to perform an uncoupled thermo-mechanical analysis of a real case study: a masonry barrel vault tested in fire conditions. The agreement between the experimental and numerical results paves the way for further study and research.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168874X24000222/pdfft?md5=85e75cc07d1634ec96ca17d02d47f20e&pid=1-s2.0-S0168874X24000222-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermo-mechanical analyses of masonry structures in fire conditions\",\"authors\":\"Daniele Pellegrini\",\"doi\":\"10.1016/j.finel.2024.104128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Historic masonry buildings are highly vulnerable to anthropic actions and environmental factors due to their low tensile strength, and bounded compressive strength. Over the years, numerous studies and experimental campaigns have been conducted to characterise the buildings’ response to external actions and identify solutions for their conservation against multiple factors, such as climatic changes, material ageing and earthquakes. However, the historic masonry structures’ response in case of fire and their safety assessment in post-fire conditions, still needs to be thoroughly investigated both from an experimental and numerical point of view. This paper generalises the constitutive equation of <em>masonry-like</em> (or no-tension) materials under non-isothermal conditions to the case in which the masonry has weak tensile strength and bounded compressive strength, even temperature dependent. The generalised constitutive equation is then implemented in NOSA-ITACA and the explicit solution to the equilibrium problem of a masonry circular ring in plane strain condition is calculated and compared with the numerical solution. Subsequently, the code is used to perform an uncoupled thermo-mechanical analysis of a real case study: a masonry barrel vault tested in fire conditions. The agreement between the experimental and numerical results paves the way for further study and research.</p></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24000222/pdfft?md5=85e75cc07d1634ec96ca17d02d47f20e&pid=1-s2.0-S0168874X24000222-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24000222\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24000222","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

历史悠久的砖石建筑由于抗拉强度和抗压强度较低,极易受到人为活动和环境因素的影响。多年来,人们开展了大量研究和实验活动,以确定建筑对外部作用的反应特征,并找出针对气候变化、材料老化和地震等多种因素的保护方案。然而,历史性砌体结构在火灾中的反应以及火灾后的安全评估仍需要从实验和数值角度进行深入研究。本文将非等温条件下类砌体(或无张力)材料的构造方程推广到砌体具有弱抗拉强度和有界抗压强度(甚至与温度有关)的情况。然后,在 NOSA-ITACA 中实施广义构成方程,计算平面应变条件下砌体圆环平衡问题的显式解,并与数值解进行比较。随后,使用该代码对一个实际案例进行了非耦合热机械分析:在火灾条件下测试了一个砌体桶形拱顶。实验结果与数值结果之间的一致性为进一步的研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermo-mechanical analyses of masonry structures in fire conditions

Historic masonry buildings are highly vulnerable to anthropic actions and environmental factors due to their low tensile strength, and bounded compressive strength. Over the years, numerous studies and experimental campaigns have been conducted to characterise the buildings’ response to external actions and identify solutions for their conservation against multiple factors, such as climatic changes, material ageing and earthquakes. However, the historic masonry structures’ response in case of fire and their safety assessment in post-fire conditions, still needs to be thoroughly investigated both from an experimental and numerical point of view. This paper generalises the constitutive equation of masonry-like (or no-tension) materials under non-isothermal conditions to the case in which the masonry has weak tensile strength and bounded compressive strength, even temperature dependent. The generalised constitutive equation is then implemented in NOSA-ITACA and the explicit solution to the equilibrium problem of a masonry circular ring in plane strain condition is calculated and compared with the numerical solution. Subsequently, the code is used to perform an uncoupled thermo-mechanical analysis of a real case study: a masonry barrel vault tested in fire conditions. The agreement between the experimental and numerical results paves the way for further study and research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
期刊最新文献
Investigation of nonlinear buckling of FGM shells using a high-order finite continuation approach Impact of surface roughness on the formation of necking instabilities in additive manufactured porous metal plates subjected to dynamic plane strain stretching Dual failure analysis of 3D structures under cyclic loads using bFS-FEM based numerical approaches 3D analysis of reinforced concrete structural components using a multi-surface elasto-plastic-anisotropic-damage material model Efficient thermal modeling of laser directed energy deposition using the forward Euler scheme: Methodology, merits and limitations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1