用于 4D-STEM 的压缩传感和数据压缩框架

IF 2.1 3区 工程技术 Q2 MICROSCOPY Ultramicroscopy Pub Date : 2024-02-10 DOI:10.1016/j.ultramic.2024.113938
Hsu-Chih Ni , Renliang Yuan , Jiong Zhang , Jian-Min Zuo
{"title":"用于 4D-STEM 的压缩传感和数据压缩框架","authors":"Hsu-Chih Ni ,&nbsp;Renliang Yuan ,&nbsp;Jiong Zhang ,&nbsp;Jian-Min Zuo","doi":"10.1016/j.ultramic.2024.113938","DOIUrl":null,"url":null,"abstract":"<div><p>Four-dimensional Scanning Transmission Electron Microscopy (4D-STEM) is a powerful technique for high-resolution and high-precision materials characterization at multiple length scales, including the characterization of beam-sensitive materials. However, the field of view of 4D-STEM is relatively small, which in absence of live processing is limited by the data size required for storage. Furthermore, the rectilinear scan approach currently employed in 4D-STEM places a resolution- and signal-dependent dose limit for the study of beam sensitive materials. Improving 4D-STEM data and dose efficiency, by keeping the data size manageable while limiting the amount of electron dose, is thus critical for broader applications. Here we introduce a general method for reconstructing 4D-STEM data with subsampling in both real and reciprocal spaces at high fidelity. The approach is first tested on the subsampled datasets created from a full 4D-STEM dataset, and then demonstrated experimentally using random scan in real-space. The same reconstruction algorithm can also be used for compression of 4D-STEM datasets, leading to a large reduction (100 times or more) in data size, while retaining the fine features of 4D-STEM imaging, for crystalline samples.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"259 ","pages":"Article 113938"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000172/pdfft?md5=8e2f018c37eccbf882d300e115155e45&pid=1-s2.0-S0304399124000172-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Framework of compressive sensing and data compression for 4D-STEM\",\"authors\":\"Hsu-Chih Ni ,&nbsp;Renliang Yuan ,&nbsp;Jiong Zhang ,&nbsp;Jian-Min Zuo\",\"doi\":\"10.1016/j.ultramic.2024.113938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Four-dimensional Scanning Transmission Electron Microscopy (4D-STEM) is a powerful technique for high-resolution and high-precision materials characterization at multiple length scales, including the characterization of beam-sensitive materials. However, the field of view of 4D-STEM is relatively small, which in absence of live processing is limited by the data size required for storage. Furthermore, the rectilinear scan approach currently employed in 4D-STEM places a resolution- and signal-dependent dose limit for the study of beam sensitive materials. Improving 4D-STEM data and dose efficiency, by keeping the data size manageable while limiting the amount of electron dose, is thus critical for broader applications. Here we introduce a general method for reconstructing 4D-STEM data with subsampling in both real and reciprocal spaces at high fidelity. The approach is first tested on the subsampled datasets created from a full 4D-STEM dataset, and then demonstrated experimentally using random scan in real-space. The same reconstruction algorithm can also be used for compression of 4D-STEM datasets, leading to a large reduction (100 times or more) in data size, while retaining the fine features of 4D-STEM imaging, for crystalline samples.</p></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"259 \",\"pages\":\"Article 113938\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000172/pdfft?md5=8e2f018c37eccbf882d300e115155e45&pid=1-s2.0-S0304399124000172-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000172\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000172","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

四维扫描透射电子显微镜(4D-STEM)是一种功能强大的技术,可在多个长度尺度上对材料进行高分辨率和高精度表征,包括对光束敏感材料的表征。然而,4D-STEM 的视场相对较小,在没有实时处理的情况下,会受到存储所需数据量的限制。此外,4D-STEM 目前采用的直线扫描方法在研究光束敏感材料时会受到分辨率和信号剂量的限制。因此,提高 4D-STEM 数据和剂量效率,在限制电子剂量的同时保持数据大小可控,对于更广泛的应用至关重要。在此,我们介绍了一种在实空间和倒易空间中通过子采样高保真地重建 4D-STEM 数据的通用方法。该方法首先在从完整 4D-STEM 数据集创建的子采样数据集上进行了测试,然后使用实空间随机扫描进行了实验演示。同样的重建算法也可用于压缩 4D-STEM 数据集,从而在保留晶体样品 4D-STEM 成像精细特征的同时,将数据大小大幅缩小(100 倍或更多)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Framework of compressive sensing and data compression for 4D-STEM

Four-dimensional Scanning Transmission Electron Microscopy (4D-STEM) is a powerful technique for high-resolution and high-precision materials characterization at multiple length scales, including the characterization of beam-sensitive materials. However, the field of view of 4D-STEM is relatively small, which in absence of live processing is limited by the data size required for storage. Furthermore, the rectilinear scan approach currently employed in 4D-STEM places a resolution- and signal-dependent dose limit for the study of beam sensitive materials. Improving 4D-STEM data and dose efficiency, by keeping the data size manageable while limiting the amount of electron dose, is thus critical for broader applications. Here we introduce a general method for reconstructing 4D-STEM data with subsampling in both real and reciprocal spaces at high fidelity. The approach is first tested on the subsampled datasets created from a full 4D-STEM dataset, and then demonstrated experimentally using random scan in real-space. The same reconstruction algorithm can also be used for compression of 4D-STEM datasets, leading to a large reduction (100 times or more) in data size, while retaining the fine features of 4D-STEM imaging, for crystalline samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
期刊最新文献
Aberration calculation of microlens array using differential algebraic method. Relativistic EELS scattering cross-sections for microanalysis based on Dirac solutions. Improved precision and accuracy of electron energy-loss spectroscopy quantification via fine structure fitting with constrained optimization. Workflow automation of SEM acquisitions and feature tracking. Enhancing subsurface imaging in ultrasonic atomic force microscopy with optimized contact force.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1