{"title":"利用深度学习对膝关节核磁共振成像进行异常检测的脂肪抑制图像抽取方法的可行性。","authors":"Shusuke Kasuya, Tsutomu Inaoka, Akihiko Wada, Tomoya Nakatsuka, Koichi Nakagawa, Hitoshi Terada","doi":"10.5114/pjr.2023.133660","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the feasibility of using a deep learning (DL) model to generate fat-suppression images and detect abnormalities on knee magnetic resonance imaging (MRI) through the fat-suppression image-subtraction method.</p><p><strong>Material and methods: </strong>A total of 45 knee MRI studies in patients with knee disorders and 12 knee MRI studies in healthy volunteers were enrolled. The DL model was developed using 2-dimensional convolutional neural networks for generating fat-suppression images and subtracting generated fat-suppression images without any abnormal findings from those with normal/abnormal findings and detecting/classifying abnormalities on knee MRI. The image qualities of the generated fat-suppression images and subtraction-images were assessed. The accuracy, average precision, average recall, F-measure, sensitivity, and area under the receiver operator characteristic curve (AUROC) of DL for each abnormality were calculated.</p><p><strong>Results: </strong>A total of 2472 image datasets, each consisting of one slice of original T1WI, original intermediate-weighted images, generated fat-suppression (FS)-intermediate-weighted images without any abnormal findings, generated FS-intermediate-weighted images with normal/abnormal findings, and subtraction images between the generated FS-intermediate-weighted images at the same cross-section, were created. The generated fat-suppression images were of adequate image quality. Of the 2472 subtraction-images, 2203 (89.1%) were judged to be of adequate image quality. The accuracies for overall abnormalities, anterior cruciate ligament, bone marrow, cartilage, meniscus, and others were 89.5-95.1%. The average precision, average recall, and F-measure were 73.4-90.6%, 77.5-89.4%, and 78.4-89.4%, respectively. The sensitivity was 57.4-90.5%. The AUROCs were 0.910-0.979.</p><p><strong>Conclusions: </strong>The DL model was able to generate fat-suppression images of sufficient quality to detect abnormalities on knee MRI through the fat-suppression image-subtraction method.</p>","PeriodicalId":94174,"journal":{"name":"Polish journal of radiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867951/pdf/","citationCount":"0","resultStr":"{\"title\":\"Feasibility of the fat-suppression image-subtraction method using deep learning for abnormality detection on knee MRI.\",\"authors\":\"Shusuke Kasuya, Tsutomu Inaoka, Akihiko Wada, Tomoya Nakatsuka, Koichi Nakagawa, Hitoshi Terada\",\"doi\":\"10.5114/pjr.2023.133660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the feasibility of using a deep learning (DL) model to generate fat-suppression images and detect abnormalities on knee magnetic resonance imaging (MRI) through the fat-suppression image-subtraction method.</p><p><strong>Material and methods: </strong>A total of 45 knee MRI studies in patients with knee disorders and 12 knee MRI studies in healthy volunteers were enrolled. The DL model was developed using 2-dimensional convolutional neural networks for generating fat-suppression images and subtracting generated fat-suppression images without any abnormal findings from those with normal/abnormal findings and detecting/classifying abnormalities on knee MRI. The image qualities of the generated fat-suppression images and subtraction-images were assessed. The accuracy, average precision, average recall, F-measure, sensitivity, and area under the receiver operator characteristic curve (AUROC) of DL for each abnormality were calculated.</p><p><strong>Results: </strong>A total of 2472 image datasets, each consisting of one slice of original T1WI, original intermediate-weighted images, generated fat-suppression (FS)-intermediate-weighted images without any abnormal findings, generated FS-intermediate-weighted images with normal/abnormal findings, and subtraction images between the generated FS-intermediate-weighted images at the same cross-section, were created. The generated fat-suppression images were of adequate image quality. Of the 2472 subtraction-images, 2203 (89.1%) were judged to be of adequate image quality. The accuracies for overall abnormalities, anterior cruciate ligament, bone marrow, cartilage, meniscus, and others were 89.5-95.1%. The average precision, average recall, and F-measure were 73.4-90.6%, 77.5-89.4%, and 78.4-89.4%, respectively. The sensitivity was 57.4-90.5%. The AUROCs were 0.910-0.979.</p><p><strong>Conclusions: </strong>The DL model was able to generate fat-suppression images of sufficient quality to detect abnormalities on knee MRI through the fat-suppression image-subtraction method.</p>\",\"PeriodicalId\":94174,\"journal\":{\"name\":\"Polish journal of radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867951/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish journal of radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5114/pjr.2023.133660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish journal of radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/pjr.2023.133660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility of the fat-suppression image-subtraction method using deep learning for abnormality detection on knee MRI.
Purpose: To evaluate the feasibility of using a deep learning (DL) model to generate fat-suppression images and detect abnormalities on knee magnetic resonance imaging (MRI) through the fat-suppression image-subtraction method.
Material and methods: A total of 45 knee MRI studies in patients with knee disorders and 12 knee MRI studies in healthy volunteers were enrolled. The DL model was developed using 2-dimensional convolutional neural networks for generating fat-suppression images and subtracting generated fat-suppression images without any abnormal findings from those with normal/abnormal findings and detecting/classifying abnormalities on knee MRI. The image qualities of the generated fat-suppression images and subtraction-images were assessed. The accuracy, average precision, average recall, F-measure, sensitivity, and area under the receiver operator characteristic curve (AUROC) of DL for each abnormality were calculated.
Results: A total of 2472 image datasets, each consisting of one slice of original T1WI, original intermediate-weighted images, generated fat-suppression (FS)-intermediate-weighted images without any abnormal findings, generated FS-intermediate-weighted images with normal/abnormal findings, and subtraction images between the generated FS-intermediate-weighted images at the same cross-section, were created. The generated fat-suppression images were of adequate image quality. Of the 2472 subtraction-images, 2203 (89.1%) were judged to be of adequate image quality. The accuracies for overall abnormalities, anterior cruciate ligament, bone marrow, cartilage, meniscus, and others were 89.5-95.1%. The average precision, average recall, and F-measure were 73.4-90.6%, 77.5-89.4%, and 78.4-89.4%, respectively. The sensitivity was 57.4-90.5%. The AUROCs were 0.910-0.979.
Conclusions: The DL model was able to generate fat-suppression images of sufficient quality to detect abnormalities on knee MRI through the fat-suppression image-subtraction method.