利用核磁共振研究拥挤环境中的蛋白质稳定性

IF 7.3 2区 化学 Q2 CHEMISTRY, PHYSICAL Progress in Nuclear Magnetic Resonance Spectroscopy Pub Date : 2024-02-08 DOI:10.1016/j.pnmrs.2024.01.001
Guohua Xu, Kai Cheng, Maili Liu, Conggang Li
{"title":"利用核磁共振研究拥挤环境中的蛋白质稳定性","authors":"Guohua Xu,&nbsp;Kai Cheng,&nbsp;Maili Liu,&nbsp;Conggang Li","doi":"10.1016/j.pnmrs.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Most proteins perform their functions in crowded and complex cellular environments where weak interactions are ubiquitous between biomolecules. These complex environments can modulate the protein folding energy landscape and hence affect protein stability. NMR is a nondestructive and effective method to quantify the kinetics and equilibrium thermodynamic stability of proteins at an atomic level within crowded environments and living cells. Here, we review NMR methods that can be used to measure protein stability, as well as findings of studies on protein stability in crowded environments mimicked by polymer and protein crowders and in living cells. The important effects of chemical interactions on protein stability are highlighted and compared to spatial excluded volume effects.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"140 ","pages":"Pages 42-48"},"PeriodicalIF":7.3000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying protein stability in crowded environments by NMR\",\"authors\":\"Guohua Xu,&nbsp;Kai Cheng,&nbsp;Maili Liu,&nbsp;Conggang Li\",\"doi\":\"10.1016/j.pnmrs.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most proteins perform their functions in crowded and complex cellular environments where weak interactions are ubiquitous between biomolecules. These complex environments can modulate the protein folding energy landscape and hence affect protein stability. NMR is a nondestructive and effective method to quantify the kinetics and equilibrium thermodynamic stability of proteins at an atomic level within crowded environments and living cells. Here, we review NMR methods that can be used to measure protein stability, as well as findings of studies on protein stability in crowded environments mimicked by polymer and protein crowders and in living cells. The important effects of chemical interactions on protein stability are highlighted and compared to spatial excluded volume effects.</p></div>\",\"PeriodicalId\":20740,\"journal\":{\"name\":\"Progress in Nuclear Magnetic Resonance Spectroscopy\",\"volume\":\"140 \",\"pages\":\"Pages 42-48\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Magnetic Resonance Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079656524000013\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079656524000013","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

大多数蛋白质都是在拥挤而复杂的细胞环境中发挥功能的,在这种环境中,生物大分子之间的弱相互作用无处不在。这些复杂的环境会改变蛋白质的折叠能谱,从而影响蛋白质的稳定性。核磁共振是一种无损且有效的方法,可在原子水平上量化蛋白质在拥挤环境和活细胞中的动力学和平衡热力学稳定性。在此,我们回顾了可用于测量蛋白质稳定性的核磁共振方法,以及在聚合物和蛋白质拥挤器模拟的拥挤环境和活细胞中蛋白质稳定性的研究结果。我们强调了化学相互作用对蛋白质稳定性的重要影响,并将其与空间排除体积效应进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studying protein stability in crowded environments by NMR

Most proteins perform their functions in crowded and complex cellular environments where weak interactions are ubiquitous between biomolecules. These complex environments can modulate the protein folding energy landscape and hence affect protein stability. NMR is a nondestructive and effective method to quantify the kinetics and equilibrium thermodynamic stability of proteins at an atomic level within crowded environments and living cells. Here, we review NMR methods that can be used to measure protein stability, as well as findings of studies on protein stability in crowded environments mimicked by polymer and protein crowders and in living cells. The important effects of chemical interactions on protein stability are highlighted and compared to spatial excluded volume effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.30
自引率
8.20%
发文量
12
审稿时长
62 days
期刊介绍: Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.
期刊最新文献
Deep learning and its applications in nuclear magnetic resonance spectroscopy Nonlinear effects in magnetic resonance localized spectroscopy and images Editorial Board Hyperpolarised benchtop NMR spectroscopy for analytical applications NMR investigations of glycan conformation, dynamics, and interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1