免疫数字双胞胎论坛:会议报告。

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY NPJ Systems Biology and Applications Pub Date : 2024-02-16 DOI:10.1038/s41540-024-00345-5
Reinhard Laubenbacher, Fred Adler, Gary An, Filippo Castiglione, Stephen Eubank, Luis L Fonseca, James Glazier, Tomas Helikar, Marti Jett-Tilton, Denise Kirschner, Paul Macklin, Borna Mehrad, Beth Moore, Virginia Pasour, Ilya Shmulevich, Amber Smith, Isabel Voigt, Thomas E Yankeelov, Tjalf Ziemssen
{"title":"免疫数字双胞胎论坛:会议报告。","authors":"Reinhard Laubenbacher, Fred Adler, Gary An, Filippo Castiglione, Stephen Eubank, Luis L Fonseca, James Glazier, Tomas Helikar, Marti Jett-Tilton, Denise Kirschner, Paul Macklin, Borna Mehrad, Beth Moore, Virginia Pasour, Ilya Shmulevich, Amber Smith, Isabel Voigt, Thomas E Yankeelov, Tjalf Ziemssen","doi":"10.1038/s41540-024-00345-5","DOIUrl":null,"url":null,"abstract":"<p><p>Medical digital twins are computational models of human biology relevant to a given medical condition, which are tailored to an individual patient, thereby predicting the course of disease and individualized treatments, an important goal of personalized medicine. The immune system, which has a central role in many diseases, is highly heterogeneous between individuals, and thus poses a major challenge for this technology. In February 2023, an international group of experts convened for two days to discuss these challenges related to immune digital twins. The group consisted of clinicians, immunologists, biologists, and mathematical modelers, representative of the interdisciplinary nature of medical digital twin development. A video recording of the entire event is available. This paper presents a synopsis of the discussions, brief descriptions of ongoing digital twin projects at different stages of progress. It also proposes a 5-year action plan for further developing this technology. The main recommendations are to identify and pursue a small number of promising use cases, to develop stimulation-specific assays of immune function in a clinical setting, and to develop a database of existing computational immune models, as well as advanced modeling technology and infrastructure.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873299/pdf/","citationCount":"0","resultStr":"{\"title\":\"Forum on immune digital twins: a meeting report.\",\"authors\":\"Reinhard Laubenbacher, Fred Adler, Gary An, Filippo Castiglione, Stephen Eubank, Luis L Fonseca, James Glazier, Tomas Helikar, Marti Jett-Tilton, Denise Kirschner, Paul Macklin, Borna Mehrad, Beth Moore, Virginia Pasour, Ilya Shmulevich, Amber Smith, Isabel Voigt, Thomas E Yankeelov, Tjalf Ziemssen\",\"doi\":\"10.1038/s41540-024-00345-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical digital twins are computational models of human biology relevant to a given medical condition, which are tailored to an individual patient, thereby predicting the course of disease and individualized treatments, an important goal of personalized medicine. The immune system, which has a central role in many diseases, is highly heterogeneous between individuals, and thus poses a major challenge for this technology. In February 2023, an international group of experts convened for two days to discuss these challenges related to immune digital twins. The group consisted of clinicians, immunologists, biologists, and mathematical modelers, representative of the interdisciplinary nature of medical digital twin development. A video recording of the entire event is available. This paper presents a synopsis of the discussions, brief descriptions of ongoing digital twin projects at different stages of progress. It also proposes a 5-year action plan for further developing this technology. The main recommendations are to identify and pursue a small number of promising use cases, to develop stimulation-specific assays of immune function in a clinical setting, and to develop a database of existing computational immune models, as well as advanced modeling technology and infrastructure.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-024-00345-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00345-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

医学数字双胞胎是与特定病症相关的人体生物学计算模型,可为个体患者量身定制,从而预测病程和个体化治疗,这是个性化医疗的一个重要目标。免疫系统在许多疾病中起着核心作用,但不同个体的免疫系统具有高度异质性,因此对这项技术提出了重大挑战。2023 年 2 月,一个国际专家组召开了为期两天的会议,讨论与免疫数字孪生相关的这些挑战。该小组由临床医生、免疫学家、生物学家和数学建模人员组成,代表了医学数字孪生开发的跨学科性质。我们提供了整个活动的视频录像。本文概述了讨论情况,简要介绍了处于不同进展阶段的数字孪生项目。本文还提出了进一步开发这项技术的 5 年行动计划。主要建议包括:确定并开发少量有前景的使用案例;开发临床环境中免疫功能的特定刺激检测方法;开发现有计算免疫模型数据库以及先进的建模技术和基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forum on immune digital twins: a meeting report.

Medical digital twins are computational models of human biology relevant to a given medical condition, which are tailored to an individual patient, thereby predicting the course of disease and individualized treatments, an important goal of personalized medicine. The immune system, which has a central role in many diseases, is highly heterogeneous between individuals, and thus poses a major challenge for this technology. In February 2023, an international group of experts convened for two days to discuss these challenges related to immune digital twins. The group consisted of clinicians, immunologists, biologists, and mathematical modelers, representative of the interdisciplinary nature of medical digital twin development. A video recording of the entire event is available. This paper presents a synopsis of the discussions, brief descriptions of ongoing digital twin projects at different stages of progress. It also proposes a 5-year action plan for further developing this technology. The main recommendations are to identify and pursue a small number of promising use cases, to develop stimulation-specific assays of immune function in a clinical setting, and to develop a database of existing computational immune models, as well as advanced modeling technology and infrastructure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
期刊最新文献
Understanding flux switching in metabolic networks through an analysis of synthetic lethals Optimal performance objectives in the highly conserved bone morphogenetic protein signaling pathway Tipping-point transition from transient to persistent inflammation in pancreatic islets EpiScan: accurate high-throughput mapping of antibody-specific epitopes using sequence information Codon usage and expression-based features significantly improve prediction of CRISPR efficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1