Sowmya Manojna Narasimha, Tanisha Malpani, Omkar S. Mohite, J. Saketha Nath, Karthik Raman
{"title":"Understanding flux switching in metabolic networks through an analysis of synthetic lethals","authors":"Sowmya Manojna Narasimha, Tanisha Malpani, Omkar S. Mohite, J. Saketha Nath, Karthik Raman","doi":"10.1038/s41540-024-00426-5","DOIUrl":null,"url":null,"abstract":"<p>Biological systems are robust and redundant. The redundancy can manifest as alternative metabolic pathways. Synthetic double lethals are pairs of reactions that, when deleted simultaneously, abrogate cell growth. However, removing one reaction allows the rerouting of metabolites through alternative pathways. Little is known about these hidden linkages between pathways. Understanding them in the context of pathogens is useful for therapeutic innovations. We propose a constraint-based optimisation approach to identify inter-dependencies between metabolic pathways. It minimises rerouting between two reaction deletions, corresponding to a synthetic lethal pair, and outputs the set of reactions vital for metabolic rewiring, known as the synthetic lethal cluster. We depict the results for different pathogens and show that the reactions span across metabolic modules, illustrating the complexity of metabolism. Finally, we demonstrate how the two classes of synthetic lethals play a role in metabolic networks and influence the different properties of a synthetic lethal cluster.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"69 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00426-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biological systems are robust and redundant. The redundancy can manifest as alternative metabolic pathways. Synthetic double lethals are pairs of reactions that, when deleted simultaneously, abrogate cell growth. However, removing one reaction allows the rerouting of metabolites through alternative pathways. Little is known about these hidden linkages between pathways. Understanding them in the context of pathogens is useful for therapeutic innovations. We propose a constraint-based optimisation approach to identify inter-dependencies between metabolic pathways. It minimises rerouting between two reaction deletions, corresponding to a synthetic lethal pair, and outputs the set of reactions vital for metabolic rewiring, known as the synthetic lethal cluster. We depict the results for different pathogens and show that the reactions span across metabolic modules, illustrating the complexity of metabolism. Finally, we demonstrate how the two classes of synthetic lethals play a role in metabolic networks and influence the different properties of a synthetic lethal cluster.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.