{"title":"腕足动物的性染色体分化、核型进化和自发三倍体。","authors":"Eleonora Pensabene, Barbora Augstenová, Lukáš Kratochvíl, Michail Rovatsos","doi":"10.1093/jhered/esae010","DOIUrl":null,"url":null,"abstract":"<p><p>Geckos exhibit derived karyotypes without a clear distinction between macrochromosomes and microchromosomes and intriguing diversity in sex determination mechanisms. We conducted cytogenetic analyses in six species from the genera Nephrurus, Phyllurus, and Saltuarius of the gecko family Carphodactylidae. We confirmed the presence of a female heterogametic system with markedly differentiated and heteromorphic sex chromosomes in all examined species, typically with the W chromosome notably larger than the Z chromosome. One species, Nephrurus cinctus, possesses unusual multiple Z1Z1Z2Z2/Z1Z2W sex chromosomes. The morphology of the sex chromosomes, along with repetitive DNA content, suggests that the differentiation or emergence of sex chromosomes occurred independently in the genus Phyllurus. Furthermore, our study unveils a case of spontaneous triploidy in a fully grown individual of Saltuarius cornutus (3n = 57) and explores its implications for reproduction in carphodactylid geckos. We revealed that most carphodactylids retain the putative ancestral gekkotan karyotype of 2n = 38, characterized by predominantly acrocentric chromosomes that gradually decrease in size. If present, biarmed chromosomes emerge through pericentric inversions, maintaining the chromosome (and centromere) numbers. However, Phyllurus platurus is a notable exception, with a karyotype of 2n = 22 chromosomes. Its eight pairs of biarmed chromosomes were probably formed by Robertsonian fusions of acrocentric chromosomes. The family underscores a remarkable instance of evolutionary stability in chromosome numbers, followed by a profound transformation through parallel interchromosomal rearrangements. Our study highlights the need to continue generating cytogenetic data in order to test long-standing ideas about reproductive biology and the evolution of genome and sex determination.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiated sex chromosomes, karyotype evolution, and spontaneous triploidy in carphodactylid geckos.\",\"authors\":\"Eleonora Pensabene, Barbora Augstenová, Lukáš Kratochvíl, Michail Rovatsos\",\"doi\":\"10.1093/jhered/esae010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Geckos exhibit derived karyotypes without a clear distinction between macrochromosomes and microchromosomes and intriguing diversity in sex determination mechanisms. We conducted cytogenetic analyses in six species from the genera Nephrurus, Phyllurus, and Saltuarius of the gecko family Carphodactylidae. We confirmed the presence of a female heterogametic system with markedly differentiated and heteromorphic sex chromosomes in all examined species, typically with the W chromosome notably larger than the Z chromosome. One species, Nephrurus cinctus, possesses unusual multiple Z1Z1Z2Z2/Z1Z2W sex chromosomes. The morphology of the sex chromosomes, along with repetitive DNA content, suggests that the differentiation or emergence of sex chromosomes occurred independently in the genus Phyllurus. Furthermore, our study unveils a case of spontaneous triploidy in a fully grown individual of Saltuarius cornutus (3n = 57) and explores its implications for reproduction in carphodactylid geckos. We revealed that most carphodactylids retain the putative ancestral gekkotan karyotype of 2n = 38, characterized by predominantly acrocentric chromosomes that gradually decrease in size. If present, biarmed chromosomes emerge through pericentric inversions, maintaining the chromosome (and centromere) numbers. However, Phyllurus platurus is a notable exception, with a karyotype of 2n = 22 chromosomes. Its eight pairs of biarmed chromosomes were probably formed by Robertsonian fusions of acrocentric chromosomes. The family underscores a remarkable instance of evolutionary stability in chromosome numbers, followed by a profound transformation through parallel interchromosomal rearrangements. Our study highlights the need to continue generating cytogenetic data in order to test long-standing ideas about reproductive biology and the evolution of genome and sex determination.</p>\",\"PeriodicalId\":54811,\"journal\":{\"name\":\"Journal of Heredity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heredity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jhered/esae010\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jhered/esae010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Differentiated sex chromosomes, karyotype evolution, and spontaneous triploidy in carphodactylid geckos.
Geckos exhibit derived karyotypes without a clear distinction between macrochromosomes and microchromosomes and intriguing diversity in sex determination mechanisms. We conducted cytogenetic analyses in six species from the genera Nephrurus, Phyllurus, and Saltuarius of the gecko family Carphodactylidae. We confirmed the presence of a female heterogametic system with markedly differentiated and heteromorphic sex chromosomes in all examined species, typically with the W chromosome notably larger than the Z chromosome. One species, Nephrurus cinctus, possesses unusual multiple Z1Z1Z2Z2/Z1Z2W sex chromosomes. The morphology of the sex chromosomes, along with repetitive DNA content, suggests that the differentiation or emergence of sex chromosomes occurred independently in the genus Phyllurus. Furthermore, our study unveils a case of spontaneous triploidy in a fully grown individual of Saltuarius cornutus (3n = 57) and explores its implications for reproduction in carphodactylid geckos. We revealed that most carphodactylids retain the putative ancestral gekkotan karyotype of 2n = 38, characterized by predominantly acrocentric chromosomes that gradually decrease in size. If present, biarmed chromosomes emerge through pericentric inversions, maintaining the chromosome (and centromere) numbers. However, Phyllurus platurus is a notable exception, with a karyotype of 2n = 22 chromosomes. Its eight pairs of biarmed chromosomes were probably formed by Robertsonian fusions of acrocentric chromosomes. The family underscores a remarkable instance of evolutionary stability in chromosome numbers, followed by a profound transformation through parallel interchromosomal rearrangements. Our study highlights the need to continue generating cytogenetic data in order to test long-standing ideas about reproductive biology and the evolution of genome and sex determination.
期刊介绍:
Over the last 100 years, the Journal of Heredity has established and maintained a tradition of scholarly excellence in the publication of genetics research. Virtually every major figure in the field has contributed to the journal.
Established in 1903, Journal of Heredity covers organismal genetics across a wide range of disciplines and taxa. Articles include such rapidly advancing fields as conservation genetics of endangered species, population structure and phylogeography, molecular evolution and speciation, molecular genetics of disease resistance in plants and animals, genetic biodiversity and relevant computer programs.