{"title":"面向未来新一代无线应用的太赫兹 MIMO 天线阵列","authors":"Rashmi Pant, Leeladhar Malviya","doi":"10.1515/freq-2023-0203","DOIUrl":null,"url":null,"abstract":"The paper proposes a high gain, low ECC, and high isolation THz MIMO antenna array for future generation wireless applications to accommodate a growing population of mobile users. A THz MIMO antenna array is designed with dimensions of 1200 × 2200 × 191.29 µm<jats:sup>3</jats:sup>. It employs the array of double-slit complementary split-ring resonators (D-CSRRs) on the bottom layer to improve the gain, return loss, and isolation. The gain of the proposed antenna array is 11.3 dBi with 66.45 % radiating efficiency at 0.65 THz. The −10 dB impedance bandwidth lies from 0.62–0.66 THz. The parameters of the MIMO antenna are evaluated such as isolation, envelope correlation coefficient (ECC), diversity gain (DG), and channel capacity loss. The ECC and DG value observed are 2.84 × 10<jats:sup>−6</jats:sup> and 9.98 dB, respectively, at 0.65 THz. The channel capacity loss and isolation of the proposed MIMO antenna array are below 0.4 bps/Hz and (|<jats:italic>S</jats:italic> <jats:sub>21</jats:sub>| > 25 dB), respectively, in the complete operating band. The suggested THz MIMO antenna array can be utilised for THz high-speed wireless communication, video-rate imaging systems, sensing, the medical field for cancer imaging, security scanning, and the detection of illicit goods.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"6 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terahertz MIMO antenna array for future generation of wireless applications\",\"authors\":\"Rashmi Pant, Leeladhar Malviya\",\"doi\":\"10.1515/freq-2023-0203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a high gain, low ECC, and high isolation THz MIMO antenna array for future generation wireless applications to accommodate a growing population of mobile users. A THz MIMO antenna array is designed with dimensions of 1200 × 2200 × 191.29 µm<jats:sup>3</jats:sup>. It employs the array of double-slit complementary split-ring resonators (D-CSRRs) on the bottom layer to improve the gain, return loss, and isolation. The gain of the proposed antenna array is 11.3 dBi with 66.45 % radiating efficiency at 0.65 THz. The −10 dB impedance bandwidth lies from 0.62–0.66 THz. The parameters of the MIMO antenna are evaluated such as isolation, envelope correlation coefficient (ECC), diversity gain (DG), and channel capacity loss. The ECC and DG value observed are 2.84 × 10<jats:sup>−6</jats:sup> and 9.98 dB, respectively, at 0.65 THz. The channel capacity loss and isolation of the proposed MIMO antenna array are below 0.4 bps/Hz and (|<jats:italic>S</jats:italic> <jats:sub>21</jats:sub>| > 25 dB), respectively, in the complete operating band. The suggested THz MIMO antenna array can be utilised for THz high-speed wireless communication, video-rate imaging systems, sensing, the medical field for cancer imaging, security scanning, and the detection of illicit goods.\",\"PeriodicalId\":55143,\"journal\":{\"name\":\"Frequenz\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frequenz\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/freq-2023-0203\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2023-0203","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Terahertz MIMO antenna array for future generation of wireless applications
The paper proposes a high gain, low ECC, and high isolation THz MIMO antenna array for future generation wireless applications to accommodate a growing population of mobile users. A THz MIMO antenna array is designed with dimensions of 1200 × 2200 × 191.29 µm3. It employs the array of double-slit complementary split-ring resonators (D-CSRRs) on the bottom layer to improve the gain, return loss, and isolation. The gain of the proposed antenna array is 11.3 dBi with 66.45 % radiating efficiency at 0.65 THz. The −10 dB impedance bandwidth lies from 0.62–0.66 THz. The parameters of the MIMO antenna are evaluated such as isolation, envelope correlation coefficient (ECC), diversity gain (DG), and channel capacity loss. The ECC and DG value observed are 2.84 × 10−6 and 9.98 dB, respectively, at 0.65 THz. The channel capacity loss and isolation of the proposed MIMO antenna array are below 0.4 bps/Hz and (|S21| > 25 dB), respectively, in the complete operating band. The suggested THz MIMO antenna array can be utilised for THz high-speed wireless communication, video-rate imaging systems, sensing, the medical field for cancer imaging, security scanning, and the detection of illicit goods.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.