层间无纺布增强混合复合材料的冲击和冲击后损伤响应

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Applied Composite Materials Pub Date : 2024-02-14 DOI:10.1007/s10443-024-10205-4
Tebernuş Tiyek, Gaye Kaya
{"title":"层间无纺布增强混合复合材料的冲击和冲击后损伤响应","authors":"Tebernuş Tiyek, Gaye Kaya","doi":"10.1007/s10443-024-10205-4","DOIUrl":null,"url":null,"abstract":"<p>This study aims to increase the ductility and the damage tolerance capability of composite structures with interlayer nonwoven reinforcement. The novelty of this study stems from its innovative approach: a comprehensive examination of the arrangement of warp and weft fibres, as well as the preform layer, coupled with both intra-layer and inter-layer hybridization, all while accounting for the incorporation of nonwoven reinforcement. The flexural, compressive, impact and post-impact compressive strengths of unreinforced and interlayer nonwoven reinforced glass/carbon/epoxy hybrid composites are carefully investigated and compared. The nonwoven reinforcement led to a reduction in flexural strength and modulus for composite structures, while enhancing their strain, thus imparting greater ductility to the structure. Both hybridization and interlayer nonwoven reinforcement increased the peak forces of composites while reducing deformations. The cracks occurring in the composite structure under load were arrested by the barrier created by the nonwoven surfaces used between the layers, which was considered an enhancement in the damage tolerance of composite structures.</p>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact and Post-Impact Damage Response of Interlayer Nonwoven Reinforced Hybrid Composites\",\"authors\":\"Tebernuş Tiyek, Gaye Kaya\",\"doi\":\"10.1007/s10443-024-10205-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims to increase the ductility and the damage tolerance capability of composite structures with interlayer nonwoven reinforcement. The novelty of this study stems from its innovative approach: a comprehensive examination of the arrangement of warp and weft fibres, as well as the preform layer, coupled with both intra-layer and inter-layer hybridization, all while accounting for the incorporation of nonwoven reinforcement. The flexural, compressive, impact and post-impact compressive strengths of unreinforced and interlayer nonwoven reinforced glass/carbon/epoxy hybrid composites are carefully investigated and compared. The nonwoven reinforcement led to a reduction in flexural strength and modulus for composite structures, while enhancing their strain, thus imparting greater ductility to the structure. Both hybridization and interlayer nonwoven reinforcement increased the peak forces of composites while reducing deformations. The cracks occurring in the composite structure under load were arrested by the barrier created by the nonwoven surfaces used between the layers, which was considered an enhancement in the damage tolerance of composite structures.</p>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s10443-024-10205-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10443-024-10205-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是提高采用层间无纺布加固的复合材料结构的延展性和损伤耐受能力。这项研究的新颖之处在于它采用了创新的方法:对经纬纤维的排列以及预成型层进行全面检查,同时结合层内和层间混合,并考虑到无纺布增强材料的加入。我们仔细研究并比较了未加固和层间无纺布加固玻璃/碳/环氧混合复合材料的抗弯、抗压、抗冲击和抗冲击后抗压强度。无纺布增强降低了复合材料结构的抗弯强度和模量,同时增强了其应变,从而赋予结构更大的延展性。杂化和层间无纺加固都增加了复合材料的峰值力,同时减少了变形。复合材料结构在荷载作用下产生的裂缝被层间无纺布表面产生的屏障所阻挡,这被认为是复合材料结构损伤耐受性的一种增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact and Post-Impact Damage Response of Interlayer Nonwoven Reinforced Hybrid Composites

This study aims to increase the ductility and the damage tolerance capability of composite structures with interlayer nonwoven reinforcement. The novelty of this study stems from its innovative approach: a comprehensive examination of the arrangement of warp and weft fibres, as well as the preform layer, coupled with both intra-layer and inter-layer hybridization, all while accounting for the incorporation of nonwoven reinforcement. The flexural, compressive, impact and post-impact compressive strengths of unreinforced and interlayer nonwoven reinforced glass/carbon/epoxy hybrid composites are carefully investigated and compared. The nonwoven reinforcement led to a reduction in flexural strength and modulus for composite structures, while enhancing their strain, thus imparting greater ductility to the structure. Both hybridization and interlayer nonwoven reinforcement increased the peak forces of composites while reducing deformations. The cracks occurring in the composite structure under load were arrested by the barrier created by the nonwoven surfaces used between the layers, which was considered an enhancement in the damage tolerance of composite structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Composite Materials
Applied Composite Materials 工程技术-材料科学:复合
CiteScore
4.20
自引率
4.30%
发文量
81
审稿时长
1.6 months
期刊介绍: Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes. Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.
期刊最新文献
A Review of Machine Learning for Progressive Damage Modelling of Fiber-Reinforced Composites Moisture Absorption Characterization and Mechanical Properties of CFRP Under the Combined Effects of Seawater and Continuous Bending Stress High-Biocontent Polymer Blends and Their Wood Plastic Composites: Blending, Compatibilization, and Their Recyclability Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints Unsupervised Machine Learning for Automatic Image Segmentation of Impact Damage in CFRP Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1